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Abstract

We show the so-called oddity formula for matrices/lattices. It states
that for a symmetric, non.degenerate matrix M ∈ Qn×n the following
relation holds:

sig−1(M) +
∑
p≥3

p� excess(M) ≡ oddity(M) mod 8

The necessary symbols like sig−1(M), p� excess(M), oddity(M) will be
de�ned in a precise manner. Some knowledge about the p-adic numbers
is required.

Let K be a �eld, R ⊂ K be a subring and X,Y ∈ Rn×n. X and Y are called
R-similar or R-equivalent, writtenX ∼R Y if there exists a matrix V ∈ Rn×n
such that V −1 ∈ Rn×n and Y = V TXV where V T is the transposed matrix.
We put P := {2, 3, 5, 7, 11, ...} to be the set of prime numbers. Unless explic-
itly mentioned, p denotes a �xed prime number in P.
We recall some basic facts about Qp and Zp, the p-adic integers:

1 Theorem. Let α ∈ Zp then there exists a uniquely determined sequence
(αn)n∈N0 such that 0 ≤ αn ≤ p− 1 such that

α =

∞∑
n=0

αnp
n

where the sum on the right converges absolutely in the norm |·|p on Qp.
Further, for any β ∈ Qp there are uniquely determined N ∈ Z and (βn)n≥N
such that

β =
∑
n≥N

βnp
n

where the sum on the right converges absolutely and
∑∞

n=0 betanp
n ∈ Zp.

Summarized, every p-adic integer may be written as a unique "power series"
in p and every β ∈ Qp may be written as a unique "Laurent series" in p.
Further, β ∈ Zp

× ⇐⇒ |β|p = 1 ⇐⇒ β0 6= 0

2 Corollary. In particular, it follows that either β ∈ Zp (if N ≥ 0) or if
N = −M then

β =
β−M
pM

+ ...+
β−1

p1
+ β′︸︷︷︸
∈Zp

∈ β−M + pβ−M+1 + ...+ pM−1β−1
pM

+ Zp
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so that Quot(Zp) is given by an isomorphic copy of Qp which will we identify
with each other henceforth.

3 Theorem. For every e ∈ N0, α ∈ Zp there exist z ∈ Z, γ ∈ Zp such that

α = z + peβ

If α possesses a p-adic expansion α = α0p
0 + α1p

1 + ... then z is precisely
given by z = α0p

0 + α1p
1 + ... + αe−1p

e−1. Further, e, β, γ are uniquely
determined if we additionally require that β ∈ Zp

×.

For de�ning the p-excess we will need the subsequent symbols:

4 De�nition. Let m ∈ N, s ∈ Zp and

s = s0 + s1p+ s2p
2 + ...+ smp

m + s̃pm+1

be its unique p-adic expansion with s̃ = sm+1 + psm+1 + ... ∈ Zp. We de�ne

Rpm(s) := s0 + s1p+ ...+ smp
m ∈ Z

Using some computations in Zp one can show the following:

5 Lemma. Rpm is additive and multiplicative in the sense that for s, t ∈ Zp,

(a) Rpm(s+ t) ≡ Rpm(s) +Rpm(t) mod pm

(b) Rpm(st) ≡ Rpm(s)Rpm(t) mod pm

so that Rpm : Zp 7→ Zpm is a homomorphism of rings.

6 De�nition (Legendre-symbol). Let p ∈ P, x ∈ Z such that (x, p) = 1. We
de�ne the Legendre-symbol to be(

x

p

)
:=

{
+1 if ∃r ∈ Zp with r2 ≡ x mod p

−1 otherwise

For the Legendre symbol there are a few famous rules that are due to
Gauss:

7 Theorem. For primes p, q ∈ P with p 6= 2, q 6= 2 the following relation
(usually called the law of quadratic reciprocity) holds:(

p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2

Furthermore, (
−1

p

)
= (−1)

p−1
2 ,

(
2

p

)
= (−1)

p2−1
8
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Proof. See, for example, [Ne], Theorem 8.6, p. 53 or any book on algebraic
number theory.

8 De�nition (Legendre-Jacobi-symbol). Let m,n ∈ Z so that there are
p1, ..., pr ∈ P, ε, δ ∈ {+1,−1} and n1, ..., nr,m1, ...,mr ∈ N ∪ {0} such that

n = εpn1
1 · · · p

nr
r , m = δpm1

1 · · · p
mr
r

We de�ne

gcd(m,n) := (−1)min(ε,δ)p
min(n1,m1)
1 · · · pmin(nr,mr)

r = (−1)min(ε,δ) gcd(|n|, |m|)

If gcd(n,m) = +1 we de�ne the Legendre-Jacobi Symbol to be

m = p ∈ P⇒
( n
m

)
:=

(
n

p

)
(in the sense of Def. 6)

m = 2⇒
(n

2

)
:=

{
+1 if n ≡ ±1 mod 8

−1 otherwise

m = −1⇒
(
n

−1

)
:= +1

m = δpm1
1 · · · p

mr
r ⇒

( n
m

)
:=

(
n

−1

)δ ( n

p1

)m1

· · ·
(
n

pr

)mr

Further, for s ∈ Zp we set

(
s

p

)
:=


(
R8(s)

2

)
if p = 2

(
Rp(s)
p

)
otherwise

9 De�nition. Let p ∈ P. Every α ∈ Qp can be uniquely written as α = pνβ
with |β|p = 1 and ν ∈ Z. We say that α is a p-adic antisquare if

(i) ν is odd

(ii)
(
β
p

)
= −1

10 Notation. We extend the set of "primes" to P = {−1} ∪ P and write
Q−1 := R.
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11 De�nition. Let K be a �eld and X ∈ Kn×n be a symmetric non-
degenerate matrix. From linear algebra (e.g. see [Fi], p.325) we know that
we can �nd a matrix V ∈ Kn×n, det(V ) ∈ K× with V TXV = diag(q1, ..., qn)
for some q1, ..., qn ∈ K. If X ∈ Qp then we de�ne the so-called p-signature
of X (with respect to V ) as follows:

(a) If p = −1 then Qp = R and by basic linear algebra we �nd V ∈ Rn×n
with det(V ) 6= 0 such that V TXV = diag(ε1, ..., εn) with εi ∈ {±1}. Let
l− := |{i : εi = −1}| and l+ := |{i : εi = +1}| then

sig−1(X) := l+ − l− mod 8

(b) Let p ≥ 2. Seen as element in Qp, we may write qi = pνiβi with |β|p = 1.
Set

m := |{i ∈ {1, ..., n} : qi is a p-adic antisquare}|

Let x = a
b ∈ Q such that (b, p) = 1 then we always put x mod 8 :=

a · b−1 mod 8. It is easily checked that this map does not depend on
the representative of q, i.e. if q = c

d , then cd
−1 ≡ ab−1 mod 8. In this

sense we put

sigp(X) :=

{
pν1 + ...+ pνn + 4m mod 8 if p > 2

R8(β1) + ...+R8(βn) + 4m mod 8 if p = 2

The 2-signature of X will also be called oddity of X. Furthermore we
de�ne

p� excess(X) :=

{
sigp(X)− n mod 8 if p 6= 2

n− sig2(X) mod 8 otherwise

12 Remark. Let p ∈ P , then the p-signature is an invariance under di�erent
diagonalization processes (i.e. if V,W both diagonalize X in the sense of the
above, then the p-signature of X with respect to the diagonalization of V is
actually the same as the one with respect to the diagonalization of W ) and
furthermore it is an invariance under Qp-similarity, i.e. if X ∼Qp Y then
sigp(X) ≡ sigp(Y ) mod 8.

Proof. The result for p = −1 is called Sylvesters law of inertia. It is due to
basic linear algebra. A proof can be found in [Fi], p. 323 or any undergrad-
uate textbook on linear algebra. For p 6= −1, the proof is written down in
[CS], chapter 15, �6. 6.1. and the �rst half of 6.2.
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13 Notation. For two matrices A ∈ Kn×n, B ∈ Km×m we denote by A⊕B
the (n+m)× (n+m) matrix

A⊕B :=

(
A 0
0 B

)
It is easy to see that sigp(A⊕B) = sigp(A) + sigp(B) for all p ∈ P.
Now we know all the symbols that occur in the oddity formula. For the proof
we need once more new symbols called the Hilbert norm residue symbol.

14 De�nition. Let p ∈ P and a, b ∈ Qp
×. We put(

a, b

p

)
:=

{
+1 if diag(a, b,−1) is non-trivially isotropic

−1 otherwise

Where some matrix M ∈ Qp
n×n is called non-trivially isotropic if there

exists a non-trivial isotropic vector, that is a vector x = (x1, ..., xn) ∈ Qp
n \

{(0, ..., 0)} such that xMxT = 0.

So the above symbol is de�ned as(
a, b

p

)
:=

{
+1 if ∃(x, y, z) ∈ Qp

3 \ {(0, 0, 0)} such that ax2 + by2 − z2 = 0

−1 otherwise

Occasionally we will write (a, b) in place for (a,bp ) whenever the prime p is
clear from the context. The following rules apply:

15 Lemma. For the Hilbert norm residue symbol for a �xed prime p and
a, b, c ∈ Qp

× we have

• (a, b) = (b, a)

• (ab, c) = (a, c)(b, c)

• (a, bc) = (a, b)(a, c)

Proof. See [Ca], Lemma 2.1 on page 42.

For that reason (and because of (a, b)2 = (±1)2 = +1), it su�ces to know
the values of the Hilbert symbol on a set of representatives of the quotient
of abelian groups Q(p) := Qp

×/(Qp
×)2. In order to understand the relation

of this symbol to the p-excesses we need to know more about this group (or,
respcetively, about squares in Qp). Let v ∈ Z, n ∈ N then there exists a
unique minimal positive representative of v mod n, i.e. a unique number
v′ ∈ Z such that v′ ≡ v mod n and 0 ≤ v′ ≤ (n − 1). We put vmoddn :=
v′ ∈ N.
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16 Theorem. Let p ∈ P, p 6= 2. Chose r ∈ Z such that (r, p) = 1 and
( rp) = 1 (i.e. r is not a square in Zp). The group Q(p) := Qp

×/(Qp
×)2 is

of order 4 and it is given by

Q(p) = {1 · (Qp
×)2, r · (Qp

×)2, p · (Qp
×)2, rp · (Qp

×)2}

The multiplication is given by

(rxpy · (Qp
×)2) · (rzpw · (Qp

×)2) = rx+zmodd 2py+wmodd 2 · (Qp
×)2

If p = 2 then the group Q(p) := Qp
×/(Qp

×)2 is of order 8 and it is given by

Q(p) = {(−1)x2y5z · (Qp
×)2 | x, y, z ∈ {0, 1}}

The multiplication is given by

((−1)x2y5z·(Qp
×)2)·((−1)x

′
2y
′
5z
′ ·(Qp

×)2) = (−1)x+x
′modd 22y+y

′modd 25z+z
′modd 2·(Qp

×)2

Proof. See [Ca], corollary on page 40.

Remark that for p ≥ 3 we can always �nd such an r: By basic algebra, the
group Z×p is cyclic (as its is the multiplicative group of the �nite �eld Fp),
let g be its generator. The squares in Z×p are precisely given by gx where
0 ≤ x ≤ ord(g) and x is even. Hence, we may select one of the elements
g, g3, g5, ... as r.

The Hilbert norm residue symbol is important because it gives rise to
the so-called Hasse-Minkowski invariant:

17 De�nition. Let X ∈ Qp
n×n be an invertible, symmetric matrix. By

basic linear algebra, X ∼Qp diag(a1, ..., an) for some matrix V ∈ Qp
n×n

with det(V ) 6= 0. We de�ne the Hasse-Minkowski symbol for X with respect
to V to be

cp(X) :=
∏

1≤i<j≤n

(
ai, aj
p

)
18 Remark. cp(X) does actually not depend on V and if X ∼Qp Y , then
cp(X) = cp(Y ). For this reason, cp(X) is called the Hasse-Minkowski invari-
ant.

Proof. See [Ca], chapter 4, sections 1 and 2.

We introduce one last new symbol, the so-called p-signature-symbol:
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19 De�nition. Let X ∈ Qp
n×n be an invertible, symmetric matrix. By

basic linear algebra, X ∼Qp diag(a1, ..., an) for some matrix V ∈ Qp
n×n

with det(V ) 6= 0. We de�ne the p-signature-symbol for X with respect to V
to be

p(X) :=

{
+1 if sigp(diag(a1, ..., an)) ≡ sigp(diag(a1 · ... · an, 1, ..., 1)) mod 8

−1 otherwise

Now we prepare the proof for the oddity formula. Here we prove that
the Hasse-Minkowski symbol and the p-signature-symbol actually coincide.

20 Theorem. For every X ∈ Qp
n×n, we have

p(X) = cp(X)

hence, the p-signature-symbol does not depend on the diagonalization process
and it is an invariant. Furthermore, if sigp(diag(a1, ..., an))��≡ sigp(diag(a1 ·
... · an, 1, ..., 1)) mod 8 then both expressions di�er by 4 mod 8.

Proof. We proceed by induction on n. Let n = 2. We �rst compute the
values of the p-signature symbol on certain special elements, namely the
representatives of Q(p): Let p ∈ P, p ≥ 3 and let further A = pxα,B = pyβ
with α, β ∈ {1, r}. Put

(p ≡ x) :=

{
+1 if p ≡ x mod 4

−1 otherwise

then we have the following table:
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A B x y (αp ) (βp ) 4k 4k′ sigp(
A 0
0 B ) sigp(

AB 0
0 1 ) p(A 0

0 B )

r r 0 0 −1 −1 0 0 2 1 + 1 +1
r 1 0 0 −1 +1 0 0 2 1 + 1 +1
1 r 0 0 +1 −1 0 0 2 1 + 1 +1
1 1 0 0 +1 +1 0 0 2 1 + 1 +1

r pr 0 1 −1 −1 4 0 1 + p+ 4 1 + p −1
r p 0 1 −1 +1 0 4 1 + p 1 + p+ 4 −1
1 pr 0 1 +1 −1 4 4 1 + p+ 4 1 + p+ 4 +1
1 p 0 1 +1 +1 0 0 1 + p 1 + p +1

pr r 1 0 −1 −1 4 0 1 + p+ 4 1 + p −1
pr 1 1 0 −1 +1 4 4 1 + p+ 4 1 + p+ 4 +1
p r 1 0 +1 −1 0 4 1 + p 1 + p+ 4 −1
p 1 1 0 +1 +1 0 0 1 + p 1 + p +1

pr pr 1 1 −1 −1 0 0 2p 1 + 1 (p ≡ 1)
pr p 1 1 −1 +1 4 0 2p+ 4 1 + 1 (p ≡ 3)
p pr 1 1 +1 −1 4 0 2p+ 4 1 + 1 (p ≡ 3)
p p 1 1 +1 +1 0 0 2p 1 + 1 (p ≡ 1)

Remarks concrning the last four lines: Consider the case A = pr = B, then

p(A 0
0 B ) = +1 ⇐⇒ 2p ≡ 2 mod 8 ⇐⇒ ∃v ∈ Z 2p− 2 = 8v

⇐⇒ ∃v ∈ Z p− 1 = 4v ⇐⇒ p ≡ 1 mod 4

and analogously we verify the last three lines. We also remark that in the
�rst 12 cases, it is clear that if the p-siganture are di�erent then they vary
by 4 mod 8. Concerning this assertion in the last four cases: Consider the
case A = pr = B and assume that the signature do not coincide (i.e. p ≡ 3
mod 4 as shown above) so that there exists a v ∈ Z such that p = 4v + 3.
We compute

sigp(
A 0
0 B )− sigp(

AB 0
0 1 ) ≡ 2p− 2 ≡ 2(4v + 3)− 2 ≡ 8v + 6− 2 ≡ 4 mod 8

and analogously we verify the remaining three cases so that we have shown
the second half of the assertion for the case n = 2, p ≥ 3. Let us prove
the �rst half of the theorem in this case. We rearrange the table to a more
compact form; now each cell just contains the result p

(
A 0
0 B

)
:

B

∖
A 1 r p rp

1 +1 +1 +1 +1

r +1 +1 −1 −1

p +1 −1 p ≡ 1 p ≡ 3

rp +1 −1 p ≡ 1 p ≡ 3

8



If we compare this table to the one given in [Ca] in the proof of Lemma 2.1,
p. 43 that summarizes the results of (A,Bp ) (remark that Cassels uses the
symbol ε instead of (p ≡ 1), then −ε = (p ≡ 3)) we see that the numbers
p
(
A 0
0 B

)
and (A,Bp ) coincide.

Now let a, b ∈ Qp
×, then by Thm. 16, there are v, w ∈ Qp

× such that
a = v2A, b = w2B for A,B ∈ {1, r, p, pr}. We then have(

a 0
0 b

)
=

(
v 0
0 w

)(
A 0
0 B

)(
v 0
0 w

)
hence,

(
a 0
0 b

)
∼Qp

(
A 0
0 B

)
. All in all we obtain(

a, b

p

)
=

(
v, b

p

)2

︸ ︷︷ ︸
=(±1)2=+1

(
A,B

p

) (
a,w

p

)2

︸ ︷︷ ︸
=(±1)2=+1

(by Lemma 15)

= p

(
A 0
0 B

)
(by the above)

= p

(
a 0
0 b

)
(as the p-signature is invariant under ∼Qp)

We have shown the theorem for the case n = 2, p ≥ 3 and the cases n =
2, p ∈ {−1, 2} work out in a completely analogous way (setup a table for the
p-signatures as above, verify for each line that the p-signatures may only vary
by 4 mod 8 provided that they are unequal and then compare the table with
the results of p(·) to the respective table in [Ca] on page 43 and 44). Now we
proceed to higher dimensions. Assume that cp(X) = +1. For i ∈ {1, ..., n}
put Ai := (ai,a1·...·ai−1·ai+1·...·an

p ). Let us assume that there exists an Ai with
Ai = +1, then since cp(·) is an invariant under Qp-similarity we may switch
the positions of ai and a1 so that we may assume A1 = +1. Now

1 = cp(X) =
∏

1≤i<j≤n

(
ai, aj
p

)

=
∏

1≤i≤n

(
ai, ai+1 · ... · an

p

)
(by Lemma 15)

= A1︸︷︷︸
=+1

·
∏

2≤i≤n

(
ai, ai+1 · ... · an

p

)
= cp(diag(a2, ..., an))
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Therefore, by the induction hypothesis

sigp(diag(a2, ..., an)) ≡ sigp(diag(a2 · ... · an, 1, ..., 1)) mod 8 (0.1)

We obtain

sigp(diag(a1, ..., an)) ≡ sigp((a1)) + sigp(diag(a2, ..., an))

≡ sigp((a1)) + sigp(diag(a2 · ... · an, 1, ..., 1)) (by (0.1))

≡ sigp

(
a1 0
0 a2 · ... · an

)
+ sigp(diag(1, ..., 1))

≡ sigp

(
a1 · a2 · ... · an 0

0 1

)
+ sigp(diag(1, ..., 1)) (as A1 = +1)

≡ sigp(diag(a1...an, 1, ..., 1))
(0.2)

Now assume cp(X) = +1 but Ai = −1 for all i, in particular A1 = −1 so
that by the same argument as above,

1 = cp(X) = A1cp(diag(a2, ..., an)) = −cp(diag(a2, ..., an))

i.e., by the induction hypothesis,

sigp(diag(a2, ..., an)) ≡ sigp(diag(a2 · ... · an, 1, ..., 1)) + 4 mod 8 (0.3)

Also note that using A1 = −1 and the correctness of the assertion in the
case n = 2, we obtain

sigp

(
a1 0
0 a2 · ... · an

)
≡ sigp

(
a1 · a2 · ... · an 0

0 1

)
+ 4 mod 8 (0.4)

so that

sigp(diag(a1, ..., an)) ≡ sigp((a1)) + sigp(diag(a2, ..., an))

≡ sigp((a1)) + sigp(diag(a2 · ... · an, 1, ..., 1)) + 4 (by (0.3))

≡ sigp

(
a1 0
0 a2 · ... · an

)
+ sigp(diag(1, ..., 1)) + 4

≡ sigp

(
a1 · a2 · ... · an 0

0 1

)
+ 4 + sigp(diag(1, ..., 1)) + 4 (by (0.4))

≡ sigp(diag(a1...an, 1, ..., 1)) + 8

≡ sigp(diag(a1...an, 1, ..., 1)) mod 8
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If we assume that cp(X) = −1 then we do the same computation as in (0.1)
to obtain that either A1 = −1 and cp(diag(a2, ..., an)) = +1 or vice versa.
In the �rst case we obtain

sigp(diag(a1, ..., an)) ≡ sigp((a1)) + sigp(diag(a2, ..., an))

≡ sigp((a1)) + sigp(diag(a2 · ... · an, 1, ..., 1)) (by (0.1))

≡ sigp

(
a1 0
0 a2 · ... · an

)
+ sigp(diag(1, ..., 1))

≡ sigp

(
a1 · a2 · ... · an 0

0 1

)
+ 4 + sigp(diag(1, ..., 1)) + 4 (by (0.4))

≡ sigp(diag(a1...an, 1, ..., 1)) + 4

and in the latter one, the "error" in the second line disappears but precisely
one new "error" occurs in line 4. Thus

sigp(diag(a1, ..., an)) ≡ sigp(diag(a1...an, 1, ..., 1)) + 4 mod 8

The above insight allows a fundamental simpli�cation of the assertion
that we have to prove in order to prove the oddity formula. First we need a
fact about the cp(·):

21 Theorem. For a non-degenerate, symmetric matrix X ∈ Qn×n, cp(X) =
−1 can only occur for �nitely many p ∈ P and furthermore∏

p∈P

cp(X) = +1

i.e. cp(X) = −1 occurs only for an even number of primes p ∈ P.

Proof. See [Ca], Lemma 3.4, p. 46.

LetX ∈ Qn×n be a symmetric, non-degenerate matrix withX ∼Qp diag(a1, ..., an).
Put Y := diag(a1...an, 1, ..., 1). Firstly, we observe that the oddity formula
is obviously equivalent to∑

p∈P

p� excess(X) ≡ 0 mod 8

11



We compare the expression to
∑

p∈P p� excess(Y ). Let Q := {p1, ..., p2k} be
those prime numbers for which cp(X) = −1, then by Thm. 20,

sigpj (X) ≡ sigpj (diag(a1...an, 1, ..., 1)) + 4 mod 8

or rather

pj� excess(X) ≡ pj� excess(diag(a1...an, 1, ..., 1))+4 = pj� excess(Y )+4 mod 8

and furthermore, for all p /∈ Q,

p� excess(X) ≡ p� excess(diag(a1...an, 1, ..., 1)) = p� excess(Y ) mod 8

so that

∑
p∈P

p� excess(X) ≡
2k∑
j=1

pj� excess(X) +
∑
p/∈Q

p� excess(X)

≡
2k∑
j=1

(pj� excess(Y ) + 4) +
∑
p/∈Q

p� excess(Y )

≡
∑
p∈P

p� excess(Y ) + 2k · 4

≡
∑
p∈P

p� excess(Y ) mod 8

(0.5)

Consequently, it su�ces to show that for every number a ∈ Q×∑
p∈P

p� excess(Y ) ≡ 0 mod 8

for Y = diag(a, 1, ..., 1) and this is what we will do now.

22 Theorem. Let a ∈ Q×, let m ∈ N and put Y ′ := diag( 1, ..., 1︸ ︷︷ ︸
(m−1) times

) then,

for the matrix Y := (a)⊕ Y ′ ∈ Qm×m we have∑
p∈P

p� excess(Y ) ≡ 0 mod 8
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Proof. Let a = (−1)x2ypx11 · ... · pxnn for x ∈ {0, 1}, y ∈ Z and xi ∈ Z for some
odd primes p1, ..., pn ∈ P\{2}. Write y = 2k+ r with k ∈ Z, 0 ≤ r ≤ 1, then

diag(a, 1, ..., 1) = diag(2k, 1, ..., 1) diag((−1)x2rpx11 · ... · p
xn
n ) diag(2k, 1, ..., 1)

Since the p-signatures (and therefore the p-excesses) are invariants under
∼Qp , the p-excess of Y and the one of diag((−1)x2rpx11 · ... · pxnn ) coincide
(modulo 8). If we proceed analogously with the rest of the exponents, we
may kill all squares and therefore assume henceforth that not only xi, y ∈ Z
but xi = 1 (if some xi is even then we simply leave out this prime number
and resort the rest of them) and y ∈ {0, 1}. Put

Q := {p1, ..., pn}

δ : {+1,−1} 7→ Z8, δ(+1) ≡ 0, δ(−1) ≡ 1,

∆2 :=

{
0 if y = 0

δ( (−1)
xp1...pn
2 ) otherwise

and

∆\pj := δ

(
(−1)xp1...pj−1pj+1...pn

pj

)
At �rst we are going to assume that x = 0, i.e. a is positive. By de�nition
of the p-excess,

• −1� excess(Y ) ≡ m−m ≡ 0

• 2� excess(Y ) ≡ m− [p1...pn + (m− 1) + 4∆2] ≡ −(p1...pn) + 1− 4∆2

• pj� excess(Y ) ≡ pj + (m− 1) + ∆\pj −m ≡ pj − 1 + ∆\pj

• p� excess(Y ) ≡ m−m ≡ 0 for all p /∈ Q

Hence,

∑
p∈P

p� excess(Y ) ≡ −(p1...pn) + 1− 4∆2 +
n∑
j=1

(pj + 4∆\pj )− n

Observe that the dimension of the matrix becomes completely irrelevant. We
have to show that this sum is congruent to 0 modulo 8 and since −4 ≡ +4
mod 8, this is equivalent to saying that

4∆2 +
n∑
j=1

4∆\pj ≡ 1− (p1...pn) +
n∑
j=1

pj − n (0.6)
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We will show this equation by induction on n.
We need two small preparations: Going through all the four cases for

x, y ∈ {+1,−1} yields

4δ(xy) ≡ 4δ(x) + 4δ(y) mod 8 (0.7)

Moreover we will need the following Lemma

23 Lemma. Let x1, ..., xn−1 ∈ Z be odd numbers, then

(x1 − 1) + (x2 − 1) + ...+ (xn−1 − 1) ≡ x1...xn−1 − 1 mod 4

Proof. Since the xi are odd, xi is either congruent to 1 or 3 modulo 4. Resort
the xi so that xj − 1 ≡ 2 mod 4 for 1 ≤ j ≤ k and xj − 1 ≡ 0 mod 4 for
k + 1 ≤ j ≤ n− 1. The left hand side evaluates to

(x1 − 1)︸ ︷︷ ︸
≡2 mod 4

+...+ (xk − 1)︸ ︷︷ ︸
≡2 mod 4

+ (xk+1 − 1)︸ ︷︷ ︸
≡0 mod 4

+...+ (xn−1 − 1)︸ ︷︷ ︸
≡0 mod 4

≡ 2r mod 4

which is 2 i�. r is odd and 0 otherwise. Let us evaluate the right hand side:

x1︸︷︷︸
≡−1

... xk︸︷︷︸
≡−1

xk+1︸︷︷︸
≡1

... xn−1︸ ︷︷ ︸
≡1

−1 ≡ (−1)r − 1

and this in turn is precisely congruent to 2 i�. r is odd and it is congruent to 0
otherwise (and this coincides with the left hand side as computed above!).

Now we will prove equation (0.6). The proof for n = 1 is a straightforward
computation. Firstly, we will assume that y = 0, i.e. a is odd and ∆2 = 0.
For increasing readability, we will use (0.7) without noti�cation now in the

14



induction step:

n∑
j=1

4∆\pj ≡
n−1∑
j=1

4δ

(
p1...pj−1pj+1...pn−1pn

pj

)
+ 4δ

(
p1...pn−1

pn

)

≡
n−1∑
j=1

4δ

(
p1...pj−1pj+1...pn−1

pj

)
+
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)
ind. hyp.
≡ 1− p1...pn−1 +

n−1∑
j=1

pj − (n− 1) +

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)

≡ 1− p1...pn +

n∑
j=1

pj − n− p1...pn−1 + p1...pn − pn + 1

+
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)

≡ 1− p1...pn +

n∑
j=1

pj − n+ (p1...pn−1)(pn − 1)− (pn − 1)

+
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)

≡ 1− p1...pn +
n∑
j=1

pj − n︸ ︷︷ ︸
=r.h.s!

+ (pn − 1)[p1...pn−1 − 1] +
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)
Put

z := (pn − 1)[p1...pn−1 − 1] +
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p− 1...pn−1

pn

)
mod 8

then it su�ces to show that z ≡ 0 mod 8. We rewrite z using the law of

15



quadratic reciprocity (cf. Thm. 7):

z ≡ (pn − 1)[p1...pn−1 − 1] +

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)

≡ (pn − 1)[p1...pn−1 − 1] +
n−1∑
j=1

4δ

((
pj
pn

)
(−1)

pn−1
4 (pj−1)

)
+ 4δ

(
p1...pn−1

pn

)

≡ (pn − 1)[p1...pn−1 − 1] + 4δ

n−1∏
j=1

(
pj
pn

)+ 4δ

(
p1...pn−1

pn

)
+ 4δ

n−1∏
j=1

(−1)
pn−1

4 (pj−1)


≡ (pn − 1)[p1...pn−1 − 1] +

���������
8 · δ

(
p1...pn−1

pn

)
+ 4δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
(0.8)

Lemma 23 implies that there is a k ∈ Z such that

[(p1 − 1) + ...+ (pn−1 − 1)]− [p1...pn−1 − 1] = 4k

and since (pn − 1) is even, pn−12 ∈ Z so that

(pn − 1)[(p1 − 1) + ...+ (pn−1 − 1)]− (pn − 1)[p1...pn−1 − 1] = 8
pn − 1

2
k

so that

(pn − 1)[(p1 − 1) + ...+ (pn−1 − 1)] ≡ (pn − 1)[p1...pn−1 − 1] mod 8 (0.9)

Now

4δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
≡ 4 ⇐⇒ δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
= 1

⇐⇒ (−1)
pn−1

4 [(p1−1)+...+(pn−1−1)] = −1

⇐⇒ pn − 1

4
[(p1 − 1) + ...+ (pn−1 − 1)] is odd

⇐⇒ ∃k ∈ Z
pn − 1

4
[(p1 − 1) + ...+ (pn−1 − 1)] = 2k + 1

⇐⇒ ∃k ∈ Z (pn − 1)[(p1 − 1) + ...+ (pn−1 − 1)] = 8k + 4

⇐⇒ (pn − 1)[(p1 − 1) + ...+ (pn−1 − 1)] ≡ 4 mod 8

(0.9)⇐⇒ (pn − 1)[p1...pn−1 − 1] ≡ 4 mod 8
(0.10)
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i.e. in the case where the δ-term is 4 mod 8,

z ≡ (pn−1)[p1...pn−1−1]+4δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
≡ 4+4 ≡ 0 mod 8

The same computation as in (0.10) shows that the δ term is 0 mod 8 if and
only if (pn − 1)[p1...pn−1 − 1] ≡ 0 mod 8 so that in this case,

z ≡ 0 + 0 ≡ 0 mod 8

this concludes the induction step for a being an odd positive natural number.
Remark that we have shown in particular that (use z ≡ 0 and −4 ≡ 4
mod 8!)

(pn − 1)[p1...pn−1 − 1] ≡ 4δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
(0.11)

which will be used later in the case where a is negative. Now let a be positive
(i.e. x = 0) and even (i.e. y = 1), then a very similar computation as above
in the induction step shows that

4∆2 +
n∑
j=1

4∆\pj ≡ 1− (p1...pn) +
n∑
j=1

pj − n+ z′

where z′ ≡ z + 4δ
(pn

2

)
+ 4δ

(
2
pn

)
mod 8. Since we have already shown

that z ≡ 0 mod 8, it su�ces to show now that z′′ := 4δ
((pn

2

) (
2
pn

))
≡ 0

mod 8: 1st case: pn = 8k ± 1, then

p2n − 1

8
=

82k2 ± 2 · 8 · k + 1− 1

8
= 2[4k2 ± k]

is even so that by Thm. 7, ( 2
pn

) = (−1)(p
2
n−1)/8 = 1. Moreover, by the

de�nition of the extended Jacobi-Legendre-Symbol, (pn2 ) = +1, hence

z′′ ≡ 4δ((+1)(+1)) ≡ 4 · 0 ≡ 0 mod 8

2nd case: pn = 8k ± 3, then

p2n − 1

8
=

82k2 ± 2 · 8 · 3 · k + 9− 1

8
= 2[4k2 ± 3k] + 1

is odd so that by Thm. 7, ( 2
pn

) = (−1)(p
2
n−1)/8 = −1. Moreover, by the

de�nition of the extended Jacobi-Legendre-Symbol, (pn2 ) = −1, hence

z′′ ≡ 4δ((−1)(−1)) ≡ 4 · 0 ≡ 0 mod 8
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This concludes the proof for a being a positive natural number. Now we
come to the case where a is a negative number. The equation that we have
to show varies slightly from the one we know already. By de�nition of the
p-excess,

• (−1)� excess(Y ) ≡ [(m− 1)− 1]−m ≡ −2

• 2� excess(Y ) ≡ m− [−p1...pn + (m− 1) + 4∆2] ≡ (p1...pn) + 1− 4∆2

• pj� excess(Y ) ≡ pj + (m− 1) + ∆\pj −m ≡ pj − 1 + 4∆\pj

• p� excess(Y ) ≡ n− n ≡ 0 for all p /∈ Q

Hence,

∑
p∈P

p� excess(Y ) ≡��−1− 1 + p1...pn + �1− 4∆2 +
n∑
j=1

(pj + 4∆\pj )− n

We have to show that this sum is congruent to 0 modulo 8 and since −4 ≡ +4
mod 8, this is equivalent to saying that

4∆2 +

n∑
j=1

4∆\pj ≡ −1 + (p1...pn) +

n∑
j=1

pj − n (0.12)

We will show this equation by induction on n.
The case n = 1 for equation (0.12) is again a straightforward computa-

tion. Let us proceed to higher dimensions:
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n∑
j=1

4∆\pj ≡
n−1∑
j=1

4δ

(
−p1...pj−1pj+1...pn−1pn

pj

)
+ 4δ

(
−p1...pn−1

pn

)

≡
n−1∑
j=1

4δ

(
−p1...pj−1pj+1...pn−1

pj

)
+

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
−p1...pn−1

pn

)
ind. hyp.
≡ −1 + p1...pn−1 +

n−1∑
j=1

pj − (n− 1) +
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
−p1...pn−1

pn

)

≡ −1 + p1...pn +

n∑
j=1

pj − n+ p1...pn−1 − p1...pn − pn + 1

+
n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
−p1...pn−1

pn

)

≡ −1 + p1...pn +
n∑
j=1

pj − n+ (1− pn)(p1...pn−1) + (1− pn)

+

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
−p1...pn−1

pn

)

≡ −1 + p1...pn +
n∑
j=1

pj − n︸ ︷︷ ︸
=r.h.s!

+ (−1)(pn − 1)[p1...pn−1 + 1] +

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
−p1...pn−1

pn

)

Put

z̃ := (−1)(pn − 1)[p1...pn−1 + 1] +

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
−p1...pn−1

pn

)

then we have to show that z̃ ≡ 0 mod 8. As in the computation for z in
(0.8) we use quadratic reciprocity to obtain
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z̃ ≡ (−1)(pn − 1)[p1...pn−1 + 1] +

n−1∑
j=1

4δ

(
pn
pj

)
+ 4δ

(
p1...pn−1

pn

)
+ 4δ

(
−1

pn

)

≡ (−1)(pn − 1)[p1...pn−1 − 1 + 2] +
�
���

���n−1∑
j=1

4δ

(
pj
pn

)
+
��������
4δ

(
p1...pn−1

pn

)

+ 4δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
+ 4δ

(
−1

pn

)
≡ (−1)(pn − 1)[p1...pn−1 − 1] + 4δ

(
(−1)

pn−1
4 [(p1−1)+...+(pn−1−1)]

)
︸ ︷︷ ︸

≡0 mod 8 by (0.11)

+ 4δ

(
−1

pn

)
+ 2(pn − 1)

≡ 4δ

(
−1

pn

)
− 2(pn − 1)

(0.13)
Now going through all the cases pn ∈ {8k+ 1, 8k+ 3, 8k+ 5, 8k+ 7 | k ∈ N}
yields the result. As an example we compute this for the case pn = 8k + 3:
Here (

−1

pn

)
= (−1)

pn−1
2 = (−1)4k−1 = −1

by Theorem 7 so that 4δ(−1pn ) ≡ 4 mod 8 but also 2(pn − 1) ≡ 2(3− 1) ≡ 4
so that z̃ ≡ 4 + 4 ≡ 0 mod 8 and the rest of the cases works out in the same
way. It remains to show (0.12) for a being even and negative. By following
the above computation we see that z̃ changes to z̃+ z̃′ where z̃′ is similar to
the additional summand that we obtained in the case a > 0 and by another
case-by-case analysis we also see that z̃′ ≡ 0 mod 8. Hence we have seen
that for every number a ∈ Q×,∑

p∈P

p� excess(Y ) ≡ 0 mod 8

which concludes the proof of the theorem.

24 Corollary. For every non-degenerate symmetric matrix X ∈ Qn×n the
oddity formula holds, that is

sig−1(M) +
∑
p≥3

p� excess(M) ≡ oddity(M) mod 8
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Proof. Let X ∼Q diag(a1, ..., an) and put Y := diag(a1...an, 1, ..., 1). Obvi-
ously, the oddity formula holds for X if and only if∑

p∈P

p� excess(X) ≡ 0 mod 8

By (0.5),
∑

p∈P p� excess(X) ≡
∑

p∈P p� excess(Y ) and by Theorem 22,
∑
p∈P

p� excess(Y ) ≡

0 mod 8.

It is interesting to note that there is a second proof for the oddity formula
that is completely di�erent from what we have seen above. First note that
it su�ces to show the oddity formula for even matrices (that are matrices
X ∈ Qn×n such that not only X ∈ Zn×n but also xii ∈ 2Z) because if X is
not even, then put d to be the least common multiple of all denominators
that occur in X so that X ∼Q 2dX2d = (2d)2X and (2d)2X is even. The
proof for even matrices is written down in [Str], Lemma 44. It needs the
terms discriminant form and a Jordan decomposition of such (for a detailed
treatment of these objects see [WeMSc]). In the version referred to, the proof
contains a small mistake: In the notation of [Str], Lemmas 50, 51, 52 actually
show that g(Jq) =

√
|Jq|γp(Jq) for the indecomposable Jordan constituents

but as p� excess(qε1,1©⊥ qε2,1) = p� excess(qε1,1)+p� excess(qε2,1) by de�nition
(and analogously for the oddity), this property remains true for bigger Jordan
blocks. In particular, for a �xed p ∈ P,

∑
Jq is p-Jordan block p� excess(Jq) ≡

p� excess(D) mod 8 (and analogously for the oddity) so that√
|D|e8(sig(L)) =

∑
µ∈D

eQ(µ) =
∏
Jq

√
|Jq|γp(Jq)

=
√
|D|e8

oddity(D) +
∑
p>2

p� excess(D)


(note that since D ∼= J1 × J2 × ... where Ji are the Jordan blocks, |D| =∏
Jq
|Jq|) which is, in fact, the oddity formula.
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