A proof for the oddity formula

Fabian Werner

Abstract

We show the so-called oddity formula for matrices/lattices. It states
that for a symmetric, non.degenerate matrix M € Q™*" the following
relation holds:

sig_ (M) + Z[Fexeess(M) = oddity(M) mod 8
p=3

The necessary symbols like sig_, (M), p—excess(M ), oddity (M) will be
defined in a precise manner. Some knowledge about the p-adic numbers
is required.

Let K be a field, R C K be a subring and X, Y € R™*". X and Y are called
R-similar or R-equivalent, written X ~p Y if there exists a matrix Ve R™*"
such that V=' € R"" and Y = VT XV where V7 is the transposed matrix.
We put P :={2,3,5,7,11, ...} to be the set of prime numbers. Unless explic-
itly mentioned, p denotes a fixed prime number in P.

We recall some basic facts about Qp and Zp, the p-adic integers:

1 Theorem. Let o € Zy, then there exists a uniquely determined sequence
(an)nen, such that 0 < oy, < p — 1 such that

(o)
o= E anp”
n=0

where the sum on the right converges absolutely in the norm Hp on Qp.
Further, for any 5 € Qp there are uniquely determined N € Z and (Bn)n>N

such that
B = Z ﬁnpn

n>N

where the sum on the right converges absolutely and Yy 2 beta,p™ € Zp.
Summarized, every p-adic integer may be written as a unique "power series”
in p and every B € Qp may be written as a unique "Laurent series” in p.
Further, B € Zp* <= |B],=1 < Bo#0

2 Corollary. In particular, it follows that either § € Zy (if N > 0) or if
N = —M then

, B—M+pB_prsr + ... +pM 1B,
€ pM

+Zp

€Zp



so that Quot(Zyp) is given by an isomorphic copy of Qp which will we identify
with each other henceforth.

3 Theorem. For every e € No,a € Zy there exist z € 7,y € Zy such that
0=zt

If o possesses a p-adic expansion o = opp® + a1p® + ... then z is precisely
giwen by z = agp’ + a1p' + ... + ae_1p®" . Further, e, 3,7y are uniquely
determined if we additionally require that § € Zp™.

For defining the p-excess we will need the subsequent symbols:

4 Definition. Let m € N, s € Zy and
S =80+ $1p+ $2p> + ... + Sp™ + 5p"
be its unique p-adic expansion with s = sy41 + PSmy1 + ... € Zp. We define
Rym(s):=so+s1p+ ... + smp™ € Z

Using some computations in Zp one can show the following:
5 Lemma. R, is additive and multiplicative in the sense that for s,t € Zp,
(a) Rpym(s+1t) = Rym(s) + Rpm(t) mod p™
(b) Rym(st) = Rym(s)Rym(t) mod p™
50 that Rpym : Zp +— Zym is a homomorphism of rings.
6 Definition (Legendre-symbol). Let p € P,z € Z such that (z,p) =1. We
define the Legendre-symbol to be
(:z:) o {—1—1 if Ir € Zp with r> =x mod p

P —1 otherwise

For the Legendre symbol there are a few famous rules that are due to
Gauss:

7 Theorem. For primes p,q € P with p # 2,q # 2 the following relation
(usually called the law of quadratic reciprocity) holds:

Furthermore,



Proof. See, for example, [Ne|, Theorem 8.6, p. 53 or any book on algebraic
number theory. O

8 Definition (Legendre-Jacobi-symbol). Let m,n € Z so that there are
Pl pr €P, 6,0 € {+1,—1} and ny,...,np,my,...,my € NU{0} such that

n:ep?l...p:‘h”’ m:dp;nlp;ylr
We define
gcd(m,n) — (_1>min(e,5)prlnin(n17m1) . ,qu}liH(nr,mr) — (_1)min(e,§) gcd(|n!, ‘m|)

If ged(n, m) = +1 we define the Legendre-Jacobi Symbol to be

m=pecP= (%) = <Z> (in the sense of Def. 6)

_ 9 (n)_ 4+1 4fn=4+1 modS8
N "l =1 otherwise

=+
) mi me
— Somi M ny . _ (™ n N
M= 0P Py :<m) (—1> (m) (pr>

( ) otherwise
P

9 Definition. Let p € P. Every o € Qp can be uniquely written as o = p” 3
with \ﬁ|p =1 and v € Z. We say that « is a p-adic antisquare if

(i) v is odd
(ii) (g) -1

10 Notation. We extend the set of "primes” to P = {—1} UP and write
Q.1 :=R.



11 Definition. Let K be a field and X € K" " be a symmetric non-
degenerate matriz. From linear algebra (e.g. see [Fi], p.325) we know that
we can find a matriz V€ K™ det(V) € K* with VT XV = diag(qi, ..., ¢n)
for some q1,...,qn, € K. If X € Qp then we define the so-called p-signature
of X (with respect to V') as follows:

(a) If p = —1 then Qp = R and by basic linear algebra we find V € R™*"
with det(V) # 0 such that VI XV = diag(ey, ..., €,) with ¢; € {£1}. Let
=i : ¢ =—1} and ly :=|{i : € = +1}| then

sig_1(X):=1ly -1 mod38

(b) Letp > 2. Seen as element in Qp, we may write ¢; = p* B; with |B], = 1.
Set
m:=|{i € {1,....,n} : q; is a p-adic antisquare}|

Let v = § € Q such that (b,p) = 1 then we always put r mod 8 :=
a-b~! mod 8. It is easily checked that this map does not depend on
the representative of q, i.e. if ¢ = 3, then cd ' = ab™' mod 8. In this
sense we pul

sig (X) = P+ ...+ p" +4m mod 8 ifp>2
ST Re(B) + oo+ Rs(Ba) +4m mod 8 if p =2

The 2-signature of X will also be called oddity of X. Furthermore we
define

sig)(X)—n mod 8 1 2

p—excess(X) 1= gp(. ) fr# ‘

n —sigy(X) mod 8 otherwise
12 Remark. Let p € P, then the p-signature is an invariance under different
diagonalization processes (i.e. if V,W both diagonalize X in the sense of the
above, then the p-signature of X with respect to the diagonalization of V is
actually the same as the one with respect to the diagonalization of W) and
furthermore it is an invariance under Qp-similarity, i.e. if X ~q, Y then

sig,,(X) = sig,(Y) mod 8.

Proof. The result for p = —1 is called Sylvesters law of inertia. It is due to
basic linear algebra. A proof can be found in [Fi|, p. 323 or any undergrad-
uate textbook on linear algebra. For p £ —1, the proof is written down in
[CS], chapter 15, §6. 6.1. and the first half of 6.2. O



13 Notation. For two matrices A € K™ B € K™*™ we denote by A® B
the (n +m) x (n 4+ m) matriz

A 0
wope (4 0)

It is easy to see that sig,(A @ B) = sig,(A) + sig,(B) for all p € P.
Now we know all the symbols that occur in the oddity formula. For the proof
we need once more new symbols called the Hilbert norm residue symbol.

14 Definition. Let p € P and a,b € Qp*. We put

—1  otherwise

<a,b) . {+1 if diag(a,b,—1) is non-trivially isotropic
p/)

Where some matriz M € Qp™*" is called non-trivially isotropic if there
ezists a non-trivial isotropic vector, that is a vector x = (z1,...,2p) € Qp™ \
{(0,...,0)} such that tMx" = 0.

So the above symbol is defined as

<a,b> o {+1 if (z,y,2) € Qp®\ {(0,0,0)} such that az?® + by? — 22 = 0
p)

—1 otherwise

Occasionally we will write (a,b) in place for (“I;b) whenever the prime p is

clear from the context. The following rules apply:

15 Lemma. For the Hilbert norm residue symbol for a fized prime p and
a,b,c € Qp* we have

e (a,b) = (b,a)
e (ab,c) = (a,c)(b,c)
e (a,bc) = (a,b)(a,c)
Proof. See [Cal, Lemma 2.1 on page 42. O

For that reason (and because of (a,b)? = (£1)? = +1), it suffices to know
the values of the Hilbert symbol on a set of representatives of the quotient
of abelian groups Q(p) := Qp*/(Qp™)?. In order to understand the relation
of this symbol to the p-excesses we need to know more about this group (or,
respcetively, about squares in Qp). Let v € Z,n € N then there exists a
unique minimal positive representative of v mod n, i.e. a unique number
v' € Z such that v = v mod n and 0 < v’ < (n—1). We put vmoddn :=
v €N,



16 Theorem. Let p € P,p # 2. Chose r € Z such that (r,p) = 1 and

(3) =1 (i.e. v is not a square in Zy). The group Q(p) = Qp*/(Qp™)? is
of order 4 and it 1s given by

Qp) = {1-(Qp™ )%, (Qp™ )% p - (Qp™ ) rp - (Qp™)*}
The multiplication is given by
(,rxpy . (QPX)2) . (szw . (QpX)Q) — T,I+zmodd2py+wmodd2 . (QpX)Z
If p = 2 then the group Q(p) == Qp™/(Qp*)? is of order 8 and it is given by
Qp) = {(-1)"2"5" - (Qp*)* | z,y,z € {0,1}}

The multiplication is given by

(—1)"2/5%(Qp™)?)-((=1)"2Y'57(Qp)?) = (1" modd2guhymodd2gzimodd2, ()2
Proof. See |Cal, corollary on page 40. O

Remark that for p > 3 we can always find such an r: By basic algebra, the
group Z, is cyclic (as its is the multiplicative group of the finite field ),
let g be its generator. The squares in Z; are precisely given by g” where
0 <z < ord(g) and =z is even. Hence, we may select one of the elements
9,9%,9°,... as .

The Hilbert norm residue symbol is important because it gives rise to
the so-called Hasse-Minkowski invariant:

17 Definition. Let X € Qp"*" be an invertible, symmetric matriz. By
basic linear algebra, X ~q, diag(ai,...,a,) for some matrizc V€ Qp"*"
with det(V') # 0. We define the Hasse-Minkowski symbol for X with respect

to V to be
i, Qg
op(X) = H (J)
1<i<j<n p

18 Remark. c,(X) does actually not depend on V' and if X ~q, Y, then
cp(X) = cp(Y). For this reason, c,(X) is called the Hasse-Minkowski invari-
ant.

Proof. See |Cal, chapter 4, sections 1 and 2. O

We introduce one last new symbol, the so-called p-signature-symbol:



19 Definition. Let X € Qp"*" be an invertible, symmetric matriz. By
basic linear algebra, X ~q, diag(ai,...,a,) for some matriz V€ Qp"*"
with det(V') # 0. We define the p-signature-symbol for X with respect to V
to be

(X) = +1 if sig,(diag(an, ..., an)) = sig,(diag(as - ... - an, 1,...,1)) mod 8
b =1 otherwise

Now we prepare the proof for the oddity formula. Here we prove that
the Hasse-Minkowski symbol and the p-signature-symbol actually coincide.

20 Theorem. For every X € Qp™"", we have

hence, the p-signature-symbol does not depend on the diagonalization process
and it is an invariant. Furthermore, if sig,(diag(az, ..., an))=sig,(diag(a -
e ap, 1, 1)) mod 8 then both expressions differ by 4 mod 8.

Proof. We proceed by induction on n. Let n = 2. We first compute the
values of the p-signature symbol on certain special elements, namely the
representatives of Q(p): Let p € P,p > 3 and let further A = p®«a, B = p¥f3
with o, 8 € {1,r}. Put

+1 ifp=2x mod4
(p=2x):= )
—1 otherwise

then we have the following table:



A8 [y ][O O [ [ [5ie,(28) [sig,(F D) | p(25)
r|r 0|0 -1]-1/0 0 2 1+1 +1
r| 1 10]0]—-1]41|0 0 2 1+1 +1
1 r |00 +1 ] —-110 0 2 1+1 +1
1 1/0(0|+1|4+1] 0 0 2 1+1 +1
r|pr|0|1]|—-1]—-1)|4 0 | 14+p+4 1+p -1
rlplolti] =141 0| 4| 14p | 14+p+a | -1
Llpr|ol1| 41| 1] 4] 4 |14ptrd| 14p+d | +1
1L ploli|+1]|+1]0] 0] 14p 1+p 41
pr|r |10 —-1|-114 0 | 14+p+4 1+p -1
prl 110 =1 | 41| 4| 4 | 14p+a| 14p+4 | +1
plr |10 +1 | =10/ 4 1+p 1+p+4 -1
p| 1|10 +1|+1 0] O 1+p 1+p +1
pr|pr|1|1|-1]-=1]01]0 2p 141 (p=1)
pr|p|1]1|—-1|+1] 4|0 2p+4 1+1 (p=3)
plpr|1|1|4+1|-1]4] 0 2p+4 1+1 (p=3)
p|lp|1|1|4+1|+1] 0| O 2p 141 (p=1)

Remarks concrning the last four lines: Consider the case A = pr = B, then

p(4%)=+1 < 2p=2 mod8 < FeZ 2p—2=28v
< WeEZ p—1=4v < p=1 mod4

and analogously we verify the last three lines. We also remark that in the
first 12 cases, it is clear that if the p-siganture are different then they vary
by 4 mod 8. Concerning this assertion in the last four cases: Consider the
case A = pr = B and assume that the signature do not coincide (i.e. p =3
mod 4 as shown above) so that there exists a v € Z such that p = 4v + 3.
We compute

sig, (4 %) —sig,(4B9)=2p—-2=2(4v+3)—-2=8v+6—-2=4 mod 8

and analogously we verify the remaining three cases so that we have shown
the second half of the assertion for the case n = 2,p > 3. Let us prove
the first half of the theorem in this case. We rearrange the table to a more

compact form; now each cell just contains the result p (’6‘ %):
B \A 1 r P rp
1] 4+1 | +1 +1 +1
r|+1|+1] -1 -1
+1| -1 |p=1|p=3
rp|4+1| -1 |p=1|p=3




If we compare this table to the one given in [Ca] in the proof of Lemma 2.1,
p. 43 that summarizes the results of (A’TB) (remark that Cassels uses the
symbol € instead of (p = 1), then —e = (p = 3)) we see that the numbers
p(4 %) and (%) coincide.

Now let a,b € Qp*, then by Thm. 16, there are v,w € Qp* such that
a=1v2A,b=w?B for A, B € {1,r,p,pr}. We then have

(0= 0) G 26 )

hence, (g 2) ~Qp (’6‘ ) All in all we obtain
2

0
B
<a;’b> i \QZ <A’B> <w> (by Lemma 15)

p p
=(£1)2=+1 =(£1)2=+1

A 0
=p (0 B) (by the above)

(as the p-signature is invariant under ~q,)

We have shown the theorem for the case n = 2,p > 3 and the cases n =
2,p € {—1,2} work out in a completely analogous way (setup a table for the
p-signatures as above, verify for each line that the p-signatures may only vary
by 4 mod 8 provided that they are unequal and then compare the table with
the results of p(-) to the respective table in [Ca| on page 43 and 44). Now we
proceed to higher dimensions. Assume that ¢,(X) = +1. For i € {1,...,n}
put A; = (MGl hdn g et us assume that there exists an A; with
A; = +1, then since ¢,(+) is an invariant under Qp-similarity we may switch
the positions of a; and a; so that we may assume A; = +1. Now

o 11 (%)

1<i<j<n
Ajy Qig] e * G
= H (Z’ZH"> (by Lemma 15)
1<i<n p
— A - H <aiaai+1 : ~-'an>
-1 2<i<n p

= cp(diag(@, N



Therefore, by the induction hypothesis
sig,,(diag(az, ..., an)) = sig,(diag(az - ... - an, 1,...,1)) mod 8 (0.1)
We obtain

sig,, (diag(a1, ..., an)) = sig,((a1)) + sig,(diag(az, ..., an))
= sig,((a1)) + sig,(diag(az - ... - an, 1,..., 1)) (by (0.1))

0 . .
'%) + sig, (diag(1, ..., 1))

Il

2.
o]
S

= sigp <O ay -
<a1 'QQ(.]'" an (1)) + sig, (diag(1,...,1)) (as Ay = +1)

= sig,(diag(ay...an, 1, ..., 1))

(0.2)

Now assume ¢,(X) = +1 but A; = —1 for all 4, in particular A; = —1 so
that by the same argument as above,

1 =cp(X) = Aicp(diag(ag, ..., an)) = —cp(diag(ag, ..., an))
i.e., by the induction hypothesis,
sig,(diag(az, ..., an)) = sig,(diag(az - ... - an,1,...,1)) +4 mod 8  (0.3)

Also note that using A1 = —1 and the correctness of the assertion in the
case n = 2, we obtain

o al 0 s ai-ag - ... An 0
sig,, <0 ... an> = sig,, < 0 1) +4 mod 8 (0.4)

so that

sig,(diag(a1, ..., an)) = sig,((a1)) + sig,(diag(as, ..., an))
= sig,((a1)) + sig,(diag(ag - ... - an, 1,...,1)) +4 (by (0.3))

a 0 >+g%mmngJ»+4

:Slgp<0 as - ... Qn

0 “an (1]> + 4 + sig,(diag(1,...,1)) +4 (by (0.4))

1l

|22}

=
a9
hs}

= sig,(diag(ay...an, 1,...,1)) +8
= sig,(diag(ay...an, 1,...,1)) mod 8



If we assume that ¢,(X) = —1 then we do the same computation as in (0.1)
to obtain that either A; = —1 and ¢,(diag(as, ...,a,)) = +1 or vice versa.
In the first case we obtain

sig,(diag(ai, ..., an)) = sig,((a1)) + sig,(diag(as, ..., an))
= sig,((a1)) + sig,(diag(ag - ... - an, 1,...,1)) (by (0.1))

. a 0 . .
= sig,, <01 — an) + 51gp(d1ag(1, oy 1))
, Ay ay O .
= sig, (‘“ “20 “ 1> +4 4 sig,(diag(1, ..., 1)) + 4 (by (0.4))

= sig,(diag(ay...an, 1,...,1)) + 4

and in the latter one, the "error" in the second line disappears but precisely
one new "error" occurs in line 4. Thus

sig,(diag(a1, ..., an)) = sig,(diag(as...an,1,...,1)) +4 mod 8
O

The above insight allows a fundamental simplification of the assertion
that we have to prove in order to prove the oddity formula. First we need a
fact about the ¢, (-):

21 Theorem. For a non-degenerate, symmetric matric X € Q™*", ¢,(X) =
—1 can only occur for finitely many p € P and furthermore

Hcp(X) =+1

pEP
i.e. ¢p(X) = —1 occurs only for an even number of primes p € P.
Proof. See [Cal, Lemma 3.4, p. 46. O

Let X € Q™" be a symmetric, non-degenerate matrix with X ~q, diag(ai, ..., an).
Put Y := diag(aj...an, 1, ...,1). Firstly, we observe that the oddity formula
is obviously equivalent to

pr excess(X) =0 mod 8
pEP

11



We compare the expression to Zpeﬁpfexcess(Y). Let Q := {p1,...,par} be
those prime numbers for which ¢,(X) = —1, then by Thm. 20,

sig,, (X) = sig,,, (diag(ar...an, 1,...;1)) +4 mod 8
or rather
pj—excess(X) = p;j—excess(diag(ai...an, 1, ...,1))+4 = p;—excess(Y)+4 mod 8
and furthermore, for all p ¢ @,
p—excess(X) = p—excess(diag(ay...an, 1,...,1)) = p—excess(Y) mod 8
so that

2%
Z p—excess(X) = Z pj—excess(X) + Z p—excess(X)
P J=1 PEQ

2%k
= Z(pjfexcess(Y) +4)+ Z p—excess(Y)
j=1

P¢Q (0.5)
= pr excess(Y) + 2k -4
peP
= prexcess(Y) mod 8
peP

Consequently, it suffices to show that for every number a € Q*

Zg%excess(Y) =0 mod8

for Y = diag(a, 1, ...,1) and this is what we will do now.

22 Theorem. Let a € Q*, let m € N and put Y’ :=diag( 1,...,1 ) then,
——

(m—1) times

for the matriz Y := (a) ®Y' € Q™*™ we have

prexcess(Y) =0 mod38

12



Proof. Let a = (—1)*2¥p{* - ... pr for x € {0,1},y € Z and z; € Z for some
odd primes p1, ...,p, € P\ {2}. Write y = 2k +r with k € Z,0 <r < 1, then

diag(a, 1,...,1) = diag(2¥, 1, ..., 1) diag((—=1)"2"p" - ... - p=) diag(2¥, 1, ..., 1)

Since the p-signatures (and therefore the p-excesses) are invariants under
~Q,, the p-excess of Y and the one of diag((—1)*2"p7" - ... - pi*) coincide
(modulo 8). If we proceed analogously with the rest of the exponents, we
may kill all squares and therefore assume henceforth that not only x;,y € Z
but x; = 1 (if some z; is even then we simply leave out this prime number
and resort the rest of them) and y € {0,1}. Put

Q = {plv 7pn}
§:{+1,-1} = Zg, 6(+1)=0,0(—-1) =1,
0 ify=20
A = x
? {5((1)?'”%) otherwise

and

(—=1)*p1...pj—1Pj+1---Pn
A\pj :6< pj J
j

At first we are going to assume that o = 0, i.e. a is positive. By definition
of the p-excess,

o —l-excess(Y)=m—-m=0
o 2—excess(Y)=m — [p1..pn + (m—1) +4A2] = —(p1...pn) + 1 — 49
o pj—excess(Y)=pj+ (m—1)+ A, —m=pj — 1+ A,
o pexcess(Y)=m—m=0foralp¢qQ
Hence,
prexcess(Y) = —(p1...pn) + 1 —4A2 + Z(pj +4A\,,) —n
peP =1

Observe that the dimension of the matrix becomes completely irrelevant. We
have to show that this sum is congruent to 0 modulo 8 and since —4 = +4
mod 8, this is equivalent to saying that

45 + Z4A\pj =1- (pl---pn) + ij -n (0.6)
j=1 =1

13



We will show this equation by induction on n.
We need two small preparations: Going through all the four cases for
z,y € {+1,—1} yields

40(zy) = 46(x) +45(y) mod 8 (0.7)

Moreover we will need the following Lemma

23 Lemma. Let x1,...,x,_1 € Z be odd numbers, then
(r1 -+ (x2—1)+ ...+ (xp—1—1)=21..7p-1—1 mod 4

Proof. Since the z; are odd, x; is either congruent to 1 or 3 modulo 4. Resort
the x; so that z; —1 =2 mod4 for 1 <j <kand z; —1 =0 mod 4 for
k+1<j<n-—1. The left hand side evaluates to

(x1—=1) +oo+ (2, — 1) + (g1 — 1)+ + (zp—1 — 1) =2r mod 4
— —_——— — |
=2 mod 4 =2 mod 4 =0 mod 4 =0 mod 4

which is 2 iff. r is odd and 0 otherwise. Let us evaluate the right hand side:

Ty oo Tk Tha1--Tp1—1=(—-1)"—=1
——

=-1 =—1 =1 =1

and this in turn is precisely congruent to 2 iff. r is odd and it is congruent to 0
otherwise (and this coincides with the left hand side as computed above!). [

Now we will prove equation (0.6). The proof for n = 1 is a straightforward
computation. Firstly, we will assume that y = 0, i.e. a is odd and Ay = 0.
For increasing readability, we will use (0.7) without notification now in the

14



induction step:

n n—1
Z4A\pj _ 245 <p1---p]1pgf1---pn1pn) o (m---pnl)

= = pj Pn
n—1 ) ) n—1
=Y 45 <p1-~p]—1pg+1---pn—1> Y45 <pn> oy <p1...pn1>
=1 bj =1 bj Pn
ind. hyp. i i, Dn P1---Pn—1
= 1—p1...pn_1+2pj—(n—l)—i—zllé <> + 46 <)
=1 =1 by Pn

n
=1—pi...pn+ ij — N —P1Pp-1+Pr-Pn—Pn+1
j=1

n—1
+3 48 <p”> 4468 (pl"]‘)p”‘l)

= \» n

n
=1—pi.pnt Y pj =+ @1po1)(pn—1) = (pn — 1)

j=1
n—1
+) 46 <p”> 446 <p1...pn_1>
=1 pj DPn
]_
n
=1 fpl...pnjtzpj —-n
7j=1
=r.h.s!
n—1
+ (oo — Dlp1pno1 — 1 + > _ 46 (pn> 148 <P1-~-pn1>
j=1 Dj DPn
Put
n—1 1
2= (pn — )[p1-pn—1 — 1] + 245 (g") + 45 (ppp"—l) mod 8
J n

Jj=1

then it suffices to show that z = 0 mod 8. We rewrite z using the law of

15



quadratic reciprocity (cf. Thm. 7):

(Pn = D)[p1opn1 — 1]+ ) 46

2= (pn — Dlp1pp—1 — 1 + 712_:146 <p"> + 46 (pl'"p"—l)
(

j=1

n—1

(pj) (—1)%4_1(le)> + 46 <p1p"—1>
n pn

j=1

Jj=1 j=1

n—1
(pn — D) [p1.-Pp-1 — 1] +g@%+ 15 <(_1)P4[(p1—1)+“.+(pn1—1)}>

(0.8)
Lemma 23 implies that there is a k € Z such that
[(pl -+ .i4 (pn-1— 1)] — [pl...pn_l — 1] =4k
and since (p, — 1) is even, 22°1 € Z so that
-1
(P = D1 = 1) + e+ Pt — )] = (pn — Dlpropnr — 1] = 87—k

so that

2

(pn = Dl(p1 = 1) + . + Pn—1 — )] = (pn — D) [p1---pn—1 — 1] mod 8 (0.9)

Now

46 ((—1)

= 1[<p11>+...+<pn11>1> =4 = 6 ((—1)’7’?1[@11>+~-+<p”11”> =1

(_1)%[(p1—1)+---+(pn71—1)] -1
Pn — 1 .
1 [(pr —1)+ ...+ (pn—1 — 1)] is odd
L —1
eZ P 1)+t (o — 1)) =2k 4+ 1

keZ (pn—Dlp1—1)+...4+(pn-1—1)] =8k+4
(pn—D[(p1—1)+ ...+ (pn—1 —1)] =4 mod 8

(Pn — 1)[p1.-.Pn1—1] =4 mod 8
(0.10)
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i.e. in the case where the d-term is 4 mod 8,

z = (pn—1)[p1...pn—1—1]+40 ((—1)1)”4 [(p11)+...+(pn—11)]> =444=0 mod8
The same computation as in (0.10) shows that the J term is 0 mod 8 if and
only if (pp, — 1)[p1...pn—1 — 1] =0 mod 8 so that in this case,

z=04+0=0 mod8

this concludes the induction step for a being an odd positive natural number.
Remark that we have shown in particular that (use z = 0 and —4 = 4
mod 8!)

n_l
(pn — D)[p1epu1 — 1] = 46 ((—1)” E “pl”*-““pn””) (0.11)

which will be used later in the case where a is negative. Now let a be positive
(i.e. x =0) and even (i.e. y = 1), then a very similar computation as above
in the induction step shows that

n n
4Ny + Z4A\pj =1—(p1...pn) + ij —n+27
j=1 j=1

where 2/ = z + 46 (%") + 49 (p%) mod 8. Since we have already shown

that 2 = 0 mod 8, it suffices to show now that 2" := 46 ((%") (p%)) =0
mod 8: 1st case: p, = 8k + 1, then
pi—1 8k*+2-8-k+1-1
8 8
is even so that by Thm. 7, (p%) = (=1)®:~1/8 = 1. Moreover, by the
definition of the extended Jacobi-Legendre-Symbol, (%) = +1, hence

= 2[4k £ K]

2" =46((+1)(+1)) =4-0=0 mod 8
2nd case: p, = 8k £ 3, then

pi—1 8k*+2-8-3-k+9-1
8 8

is odd so that by Thm. 7, (p%) = (—1)®2-D/8 = _1. Moreover, by the
definition of the extended Jacobi-Legendre-Symbol, (%) = —1, hence

= 2[4k* £ 3k +1

2" =46((-1)(-1))=4-0=0 mod 8
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This concludes the proof for a being a positive natural number. Now we
come to the case where a is a negative number. The equation that we have
to show varies slightly from the one we know already. By definition of the
p-excess,

o (—1)-excess(Y)=[(m—1)—1] —-m=-2
o 2—excess(Y) =m — [—p1..pn + (m — 1) +4A5] = (p1...pn) +1 — 44,
o pj—excess(Y) =pj+ (m— 1)+ A, —m=p;j —1+4A,
e p-excess(Y)=n—-n=0foralpé¢Q

Hence,
Z}%excess(Y) =4 —1+p1..pn+1—402 + Z(pj +4Ay,,) —n
pEP Jj=1

We have to show that this sum is congruent to 0 modulo 8 and since —4 = +4
mod 8, this is equivalent to saying that

A0+ 4Ay, = 1+ (prpn) + Y _pj—n (0.12)
j=1 j=1

We will show this equation by induction on n.
The case n = 1 for equation (0.12) is again a straightforward computa-
tion. Let us proceed to higher dimensions:
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n n—1
_ —P1---Pj—1Pj+1---Pn—1Pn —P1---Pn—1
>y, =Y 43 ) ag (atect)
st J st .

Dy Pn
n—1 . ] ) n—1 -
5245< p1-~-p]1pj+1-~pn1)+z45 (m)+45( p1---pn1)
= bj = by Pn

n—1 n—1
ind. hyp. —P1-.-Pn—
in Eyp 1+ preepo_i + 2 :pj _ (TL— 1) + E 45 <p"> + 46 (plp"l>

j=1 =1 P

n
= —1+p1Pn+ Y Pj =N+ PlPn1 = PloDn — P+ 1
7j=1

n—1
+> 46 (p") +46 (‘pl”'p"*)

=1 bj DPn

n
= —14pr.pnt+ » pj—n+(1—pn)(pr.pa1)+ (1-pn)
j=1

n—1
+Y 48 <p”> + 46 <_p1;p"‘1>

j=1 NP

n
=-1 +p1...pn+2pj -n

j=1
=r.h.s!
n—1 B
+ (=1)(pn = Dlp1o-pn + 1]+ _46 <p"> 146 <pl~'pnl>
j=1 Pj Dn
Put
n—1 P i
Zi=(=1)(pn = Dlpropn-1+ 1]+ > _46 (p”) 146 <1pn—1)
j n

Jj=1

then we have to show that 2 = 0 mod 8. As in the computation for z in
(0.8) we use quadratic reciprocity to obtain
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Z=(=1)(pn — Dlp1---pn_1 +1] +§45<Pn>+45<m Pn— 1>+45< 1>
j=1

J

n—1

(~1)on ~ Dl pn1—1+2+;;g%%fj+g(£;<w*j
=1

Pn—l1 1 1) —1

+ 46 ( ) 4 [(pr1—1)+...4+(Pn—1—1)] +45 | —

n—1
<—n@n—n@hpn1—u+450—np4KM””*““*—W)

=0 mod 8 by (0.11)

445 (;j) +2pn — 1)
— 45 (;j) 2 —1)
(0.13)

Now going through all the cases p,, € {8k + 1,8k + 3,8k + 5,8k + 7 | k € N}
yields the result. As an example we compute this for the case p, = 8k + 3:

Here . )
—_ Pn—
(51 =™ ==
Dn

by Theorem 7 so that 4(5(p ) =4 mod 8 but also 2(p, —1) =2(3—-1) =4
so that Z=4+4 =0 mod 8 and the rest of the cases works out in the same
way. It remains to show (0.12) for a being even and negative. By following
the above computation we see that 2 changes to z + 2z’ where 2’ is similar to
the additional summand that we obtained in the case a > 0 and by another
case-by-case analysis we also see that 2’ = 0 mod 8. Hence we have seen
that for every number a € Q*,

Zz%excess(Y) =0 mod8

which concludes the proof of the theorem. O

24 Corollary. For every non-degenerate symmetric matriz X € Q™*™ the
oddity formula holds, that is

sig_;( +Zp excess(M) = oddity(M) mod 8
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Proof. Let X ~q diag(ai,...,an) and put Y := diag(ai...an, 1,...,1). Obvi-
ously, the oddity formula holds for X if and only if

pr excess(X) =0 mod 8
peP

y (0.5), 2 pp-excess(X) =} 5 p-excess(Y) and by Theorem 22, pr excess(Y) =
peP
0 mod 8. O
It is interesting to note that there is a second proof for the oddity formula
that is completely different from what we have seen above. First note that
it suffices to show the oddity formula for even matrices (that are matrices
X € Q"™ such that not only X € Z"*" but also x;; € 27Z) because if X is
not even, then put d to be the least common multiple of all denominators
that occur in X so that X ~g 2dX2d = (2d)2X and (2d)%X is even. The
proof for even matrices is written down in [Str], Lemma 44. It needs the
terms discriminant form and a Jordan decomposition of such (for a detailed
treatment of these objects see [WeMSc]). In the version referred to, the proof
contains a small mistake: In the notation of [Str|, Lemmas 50, 51, 52 actually
show that g(J, \/|T 7p ) for the 1ndecomposable Jordan constituents
but as p— excess( i@ gezt ) p excess(q'!) +p-excess(¢2!) by definition
(and analogously for the oddity), this property remains true for bigger Jordan
blocks. In particular, for a fixed p € P, Z(]q is p-Jordan block P~ excess(Jg) =
p-excess(D) mod 8 (and analogously for the oddity) so that

|Dles(sig(L Z e H |Jalvp(Jq)
Jq

neD

|Dles | oddity(D) + Z}% excess(D)
p>2

(note that since D = J; X Jy X ... where J; are the Jordan blocks, |D| =
qu |Jq|) which is, in fact, the oddity formula.
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