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1 Introduction

The ultimate goal in this bachelor thesis is to show that the ring of modular
forms with integer weight for two speci�c subgroups of SL2(Z), namely Γ0(2)
and Γ1(3), is generated by two �xed modular forms. In order to do so, we
need three main ingredients:

¬ Of course, the two basic modular forms for the subgroups announced need
to exist.

­ We need an assertion of the form 'There are at most x essentially di�erent
modular forms of weight k for the subgroup'.

® We need to assure that we can construct these x essentially di�erent
modular forms of weight k.

The term 'essentially di�erent' will turn out to mean 'linearly independent'
as the set of modular forms is a vector space.

¬ will only be mentioned brie�y but references will be given where to
�nd the full proofs for the constructions. ­ will be done using the so-called
k/12 − Formula which will give an upper bound on the dimension of the
space of modular forms of a speci�c weight. On ®: We will construct all
modular forms as monomials in the two basic modular forms. In order for
the monomials to be linearly independent, we need the two basic modular
forms to be algebraically independent. This can be shown if one has enough
information about the zeros of the modular forms. The desire for this will
lead to the concept of the "order" of a modular form f at some point z
in H ∪ Q ∪ {∞}. The order will essentially be ωf (z) (the index of the
�rst occurring term in the Laurent series of f developed around z) up to
multiplication of a number cz ∈ {1, 1/2, 1/3} depending on the point z.

In the next section, we are going to precisely de�ne the terms "SL2(Z)
", "modular form" and so on. In section 3 the k/12 − Formula for SL2(Z)
and for general subgroups will be deduced. Finally, in section 4, we prove
the rings of modular forms for Γ0(2) and Γ1(3) to be polynomial rings in two
variables.

Summarized the following results have been established:

• The general k/12− Formula has been extended to the case where the
subgroup Γ of SL2(Z) does not contain −Id where in [Ra 77] you will
only �nd the proof for the case where −Id ∈ Γ.
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• We show that there is only one �xed point orbit for the subgroups
Γ0(2), Γ1(3). The proof for this was already done in [Sko 92] but we will
prove it without the usage of the Hurwitz summation formula or any
Riemann surface theory. We will only use elementary computations.

• We formally prove the claim from [B 00] (see p. 27, 5th sentence)
that the ring of modular forms of Γ1(3) of integer weight also forms a
polynomial ring in two variables.

Throughout this document we will follow the notation from [Ra 77].

2 Basic concepts and de�nitions

2.1 Actions of the modular group and its subgroups

2.1.1 De�nition. We de�ne

SL2(Z) :=

{(
a b
c d

)
∈ Z2x2

∣∣ det(T ) = ad− bc = 1

}
SL2(Z) is a group. The inverse of T =

(
a b
c d

)
is given by

(
d −b
−c a

)
. In n

dimensions this generally follows from Cramer's rule.

2.1.2 De�nition. We de�ne the subgroups

(a) Γ0(2) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣ c ≡ 0 mod N

}

(b) Γ1(3) :=

{(
a b
c d

)
∈ SL2(Z)

∣∣ (a b
c d

)
≡
(

1 ∗
0 1

)
mod N

}
Where the asterisk means that the value is arbitrary, i.e. n ≡ ∗ mod N is
always true for all n ∈ Z.

That these sets are subgroups is shown by an elementary calculation.

2.1.3 De�nition. Let Γ be an arbitrary subgroup of SL2(Z).

(a) For matrices S, T ∈ SL2(Z) we de�ne the equivalence relation T ∼Γ

S ⇐⇒ (∃G ∈ Γ) T = G · S and [T ]Γ := {S ∈ SL2(Z) | S ∼Γ T} its
equivalence class. We will in short just write [T ] instead of [T ]Γ and ∼
instead of ∼Γ as it will always be clear from the context which particular
subgroup Γ will be meant.
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(b) The index of Γ is [SL2(Z) : Γ] := |SL2(Z)/Γ| := |SL2(Z)/∼| where
SL2(Z)/∼ denotes the quotient of set modulo equivalency relation, i.e.
SL2(Z)/∼ := {[T ] | T ∈ SL2(Z)}. It is possible that [SL2(Z) : Γ] is
in�nite.

(c) A set R ⊆ SL2(Z) is called a system of right representatives (RRS for
short) if it generates SL2(Z)/∼ i.e. if {[R] | R ∈ R} = SL2(Z)/∼ and
R � R′ whenever R 6= R′ for all R,R′ ∈ R. In this case we have
[SL2(Z) : Γ] = |R| as R 7→ [R] is a bijection from R to SL2(Z)/∼.

Given any subgroup H of a group G, we can always select an RRS by
the Axiom of choice, by the Lemma of Zorn respectively if we sort the sets
that contain only Elements x, y s.t. x � y with the partial "⊂"-relation.
Then, every chain possesses a maximal element, namely the union over all its
members. Therefore there must be a maximal element for the "⊂"-relation
called M. This must be an RRS as all elements are inequivalent and if
there is some class of which no representative is inM, then we simply add
a representative of this new class to M and obtain a bigger set which is a
contradiction. Hence we have shown:

2.1.4 Lemma. For every subgroup Γ of SL2(Z), there exists an RRS.

Although it is possible that [SL2(Z) : Γ] = ∞, we will always assume
that this is not the case. This is reasonable, because the subgroups that we
will be concerned about (Γ0(2) and Γ1(3)) do indeed have a �nite index in
SL2(Z).

We will now de�ne the action that we will be mainly concerned about.
First of all we compactify C with the point ∞ using the Alexandro� one-
point compacti�cation (i.e. a set O ⊆ C is called open i�. it is already open
as a subset of C in the usual topology or OC is compact in C). We then
de�ne

C := C ∪ {∞}
H := {z ∈ C | Im(z) > 0}
P := Q ∪ {∞}
H := H ∪ P

We also enrich the multiplicative and additive structure on C by the de�ni-
tions

∞+ z = z +∞ =∞, z

∞
= 0 ∀z ∈ C
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z · ∞ =∞ · z =∞, z

0
=∞ ∀z ∈ C \ {0}

Note that there is no rule for 0 · ∞ and other special cases.

2.1.5 De�nition. On SL2(Z) × C we de�ne the operation "." for T =(
a b
c d

)
∈ SL2(Z) and z ∈ C to be

T.z :=
az + b

cz + d
(z ∈ C), T.∞ :=

a

c
and T.

(
−d
c

)
:=∞

.

An elementary computation shows that this indeed de�nes a group ac-
tion. For this reason, when given S, T ∈ SL2(Z) and z ∈ C, we will write
STz for (S · T ).z = S.(T.z) and Tz for T.z. We now show that "." can
be restricted to a group operation on H as this is the operation we will be
interested in. Let T ∈ SL2(Z), then T.P ⊆ P by de�nition. If z = x+ iy ∈ H
is given, then T.z ∈ H because for z = x+ iy:

Im(Tz) = Im

(
az + b

cz + d

)
= Im

(
(az + b)

1

(cx+ d) + i(cy)

)
= Im

(
[a(x+ iy) + b] · [(cx+ d)− i(cy)] · 1

|cz + d|2

)
= Im

(
[((ax+ b)(cx+ d) + (ay)(cy))

+ i((ay)(cx+ d)− (ax+ b)(cy))] · 1

|cz + d|2

)
= [(ay)(cx+ d)− (ax+ b)(cy)]

1

|cz + d|2

= [aycx+ ady − axcy − bcy]
1

|cz + d|2

= det(T )
1

|cz + d|2︸ ︷︷ ︸
>0

> 0

as cz+d 6= 0 must hold because otherwise z = −d/c /∈ H. So all T ∈ SL2(Z)
can be regarded as bijections from H to H as the inverse mapping is given
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by the inverse of the Matrix which again maps from H to H by the same
arguments as above.

If T =
(
a b
c d

)
then we also de�ne −T :=

(−a −b
−c −d

)
. An important observa-

tion is that −T and T are in general unequal but both de�ne the same action
as Tz = az+b

cz+d = (−1)((−a)z+(−b))
(−1)((−c)z+(−d)) = (−a)z+(−b)

(−c)z+(−d) = (−T )z. One may wonder
whether this happens more often. This question will be answered now:

2.1.6 De�nition. We de�ne the map

Φ : SL2(Z) 7−→ {invertible mappings from H to H}

as Φ(T ) = T̂ where T̂ : H → H, T̂ (z) = T.z. For any subgroup Γ of SL2(Z)
we also de�ne Γ̂ := Φ(Γ) and call Γ̂ the homogeneous group associated to Γ.

Because "." is a group operation, Φ is multiplicative in the sense that
Φ(ST ) = Φ(S) ◦ Φ(T ) =: Φ(S)Φ(T ). As an abbreviation we will also write
T̂ for Φ(T ).

2.1.7 Lemma. Let Γ be a subgroup of SL2(Z) and T =
(
a b
c d

)
∈ SL2(Z),

then

(a) c = 0⇒ a = d = 1 or a = d = −1

(b) There are z1, z2, z3 all pairwise unequal such that zi 6= −d
c , zi 6= ∞ and

Tzi = zi for i = 1, 2, 3 then T = +Id or T = −Id.

(c) The kernel of Φ is {+Id,−Id}.

(d) If −Id ∈ Γ, then Γ̂ = Image(Φ) ∼= Γ/ ker(Φ) = Γ/{±Id}.

Proof. (a) c = 0 implies 1 = det(T ) = ad − cb = ad i.e. a, d ∈ Z and
multiplicatively invertible so both must be ±1. As they must produce +1
when multiplicated, the cases with di�erent signs are impossible.

(b) We reformulate Tz = z:

Tz = z ⇐⇒ az + b

cz + d
= z

⇐⇒ az + b = cz2 + dz(asz 6=∞, cz + d 6= 0)

⇐⇒ cz2 + (d− a)z − b = 0

Now this polynomial is of degree 2 but has three di�erent roots. Con-
sequently it has to be the zero polynomial, i.e. c = 0 = b and by (a),
a = d = ±1.
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(c) Φ(T ) = Îd then T̂ .z = Îd.z = z for all z ∈ H then in particular for
i, 2i, 3i ∈ H \ {∞,−d/c}. Now apply (b).

(d) Application of the �rst isomorphism theorem from general algebra.

We will often be confronted with equations of the form Ŝ = T̂ . As a
consequence of Lemma 2.1.7(c), S = +T or S = −T follows. For brevity
we will from now on write ±T for the fact that the current assertion holds
either for +T or for −T , so for example ker(Φ) = {±Id}. We also clearly
want to distinguish between assertions in Φ(SL2(Z)) and SL2(Z). With the
"hat"-notation we want to emphasis that we now talk about actions (i.e.
mappings) induced by matrices and with the ±-symbol we want to emphasis
that we now work with actual matrices (not mappings!) in SL2(Z).

2.1.8 Lemma. Let Γ be a subgroup of SL2(Z) having a �nite index n =

[ŜL2(Z) : Γ̂], then

(a)

[SL2(Z) : Γ] =

{
[ŜL2(Z) : Γ̂] if − Id ∈ Γ

2[ŜL2(Z) : Γ̂] otherwise

In particular, if −Id /∈ Γ, then [SL2(Z) : Γ] is even.

(b) If R̂ = {L̂1, ..., L̂n} is an RRS of ŜL2(Z)/Γ̂, then

R :=

{
{L1, ..., Ln} if − Id ∈ Γ

{+L1,−L1, ...,+Ln,−Ln} otherwise

is an RRS of SL2(Z)/Γ.

(c) If conversely k = [SL2(Z) : Γ] and R = {L1, ..., Lk} is an RRS for

SL2(Z)/Γ then if −Id ∈ Γ, R̂ := {L̂1, ..., L̂k} is an RRS for ŜL2(Z)/Γ̂.
If −Id /∈ Γ, then precisely half of the elements in R̂ pair up in the sense
that after resorting the L̂i, we have

Φ(L1) ∼ Φ(L(n/2)+1), Φ(L2) ∼ Φ(L(n/2)+2), ...,Φ(Ln/2) ∼ Φ(Ln)

and {Φ(L1), ...,Φ(Ln/2)} forms an RRS for ŜL2(Z)/Γ.

Proof. (a): follows from (b) and the fact that the size of the RRS determines
the index.
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(b): Let n = [ŜL2(Z) : Γ̂] and R̂ = {R̂1, ..., R̂n} (i.e. R1, ..., Rn ∈ SL2(Z)

and R̂i = Φ(Ri)) be a RRS for ŜL2(Z) over Γ̂. At �rst we consider the
case where −Id ∈ Γ. Consider the set R := {R1, ..., Rn} then we claim
that R is an RRS for SL2(Z) over Γ. The R ∈ R are incongruent for if
Ri ∼ Rj then there is a G ∈ Γ with Ri = GRj so that Φ(Ri) = Φ(G)Φ(Rj)

which is impossible as R̂ was an RRS. It generates SL2(Z): Let some matrix

T ∈ SL2(Z) be given, then since R̂ was an RRS for ŜL2(Z), there is an
i ∈ {1, ..., n} and a G ∈ Γ such that

Φ(T ) = Φ(G) · Φ(Ri) = Φ(GRi)

so that either
T = +GRi or T = −GRi

In the �rst case, T ∈ Γ · R and we are done. In the latter one we set
G̃ := −Id ·G ∈ Γ so that T = G̃Ri ∈ Γ · R.

In the case where −Id /∈ Γ we set L1 = R1, L2 = −R1, L3 = R2, L4 =
−R2, ... and R = {L1, ..., L2n} = {+R1,−R1,+R2,−R2, ...} and claim that
this is an RRS. Incongruity: Assume Ln ∼ Lm so that there are i, j with
εRi ∼ δRj , ε, δ ∈ {+1,−1}. i 6= j leads to

Φ(Ri) = Φ(εRi) ∈ Φ(ΓδRj) = Φ(Γ)Φ(Rj)

which is a contradiction as R̂ was an RRS. In the case Ri ∼ −Ri there is
a G ∈ Γ with Ri = G(−Ri). Canceling out Ri leads to G = −Id which is
impossible as −Id /∈ Γ by assumption. That R generates SL2(Z) is shown
as above where in the case T = −GRi we cannot take −G ∈ Γ but we can
say that T = G(−Ri) ∈ Γ · R as −Ri ∈ R.

(c): The case −Id ∈ Γ is shown analogously to the above. When −Id /∈
Γ, we create the RRS announced step by step. Firstly, we know that R̂ still

generates ŜL2(Z) as

SL2(Z) = ΓR ⇒ ŜL2(Z) = Φ(SL2(Z)) = Φ(ΓR) = Φ(G)Φ(R)

It cannot be the case that all Φ(Ri) are incongruent as otherwise Φ(R) was

an RRS so [ŜL2(Z) : Γ] = |Φ(R)| = n
(a)
= 2[ŜL2(Z) : Γ] which is a con-

tradiction. Consequently (after resorting the Φ(Ri)) Φ(R1) ∼ Φ(R(n/2)+1)

and thus we can set R̂(1) := R̂ \ {Φ(R(n/2)+1)} and still, R̂(1) generates

ŜL2(Z). Continuing in this way yields sets R̂(1), R̂(2), .... Note that from
step to step, only di�erent pairs of Φ(Ri),Φ(Rj) that are equivalent can be
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involved. We only show this for step 1, the rest works analogously: in step 1,
Φ(R1) ∼ Φ(R(n/2)+1). In the next step, it cannot be Φ(R1) that is equivalent
to some other Φ(Rj) for some j 6= (n/2) + 1 as otherwise

Φ(R(n/2)+1) ∼ Φ(R1) ∼ Φ(Rj)

⇒∃G,H ∈ Γ Ĝ ̂R(n/2)+1 = R̂1 and ĤR̂j = R̂1

⇒GR(n/2)+1 = R1 or −GR(n/2)+1 = R1

and

HRj = R1 or −HRj = R1

The �rst cases cannot occur as R was an RRS for SL2(Z)/Γ. So both times,
the second case must be true:

⇒−GR(n/2)+1 = R1 and −HRj = R1

⇒−GR(n/2)+1 = −HRj
⇒GR(n/2)+1 = HRj

by multiplying the whole equation with −Id. This is the same contradiction

as above. All the sets R̂(1), R̂(2), ... still generate ŜL2(Z) as this property is
preserved from step to step. Thus, R̂(i) is an RRS if all members of the set
are incongruent. This must be the case for R̂(n/2) as otherwise the size of R̂(i)

determined the index which would then be too small or too big according to
(a).

ATTENTION! As we have seen in the lemma above: it is of crucial
importance whether we mean the homogenized versions (=̂ actions) induced

by the groups (i.e. Γ̂, ŜL2(Z) respectively) or the actual group as a set of
matrices (i.e. Γ and SL2(Z)).

2.1.9 De�nition. Let Γ be a subgroup of SL2(Z). On H we de�ne the
equivalence relation z ≈Γ z

′ ⇐⇒ ∃G ∈ Γ z = G.z′ and the equivalence class
[z]Γ := {z′ ∈ H | z′ ≈Γ z}, the orbit of z under the action of Γ. Again we
want to suppress the relation to the concrete subgroup as it will be clear which
one is meant from the context. Therefore we always write [z] = SL2(Z).z for
the orbit of z under SL2(Z) and JzK = Γ.z for the orbit of z under the action
of the subgroup Γ. If x ≈ y we also say that x is congruent to y modulo Γ.

2.1.10 De�nition. Let Γ be a subgroup of SL2(Z), then a set of points
F∗ ⊆ H is called a proper fundamental region i�. for every z ∈ H, | JzK ∩
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F∗| = 1. Equivalently one could say that all elements in F∗ are inequivalent
and {JzK | z ∈ F∗} = H/≈, i.e. what an RRS means to SL2(Z)/Γ, F∗ means
to H/≈.

Analogously to the case of an RRS, we can extend a given set of in-
congruent points (or the empty set) to a proper fundamental domain (see
Lemma 2.1.4).

2.1.11 Theorem. Set F1 := {z ∈ C | − 1
2 ≤ Re(z) ≤ 0 and |z| ≥ 1},F2 :=

{z ∈ C | 0 < Re(z) < 1
2 and |z| > 1}, then FI := F1 ∪ F2 ∪ {∞} is a proper

fundamental domain for SL2(Z).

Proof. See [Ra 77], p. 51, Theorem 2.4.1.

2.2 Stabilizers and �xed points

2.2.1 De�nition. Let Γ be a subgroup of SL2(Z).

(a) Given a matrix T ∈ Γ, a point z ∈ H is called a �xed point of T i�.
Tz = z.

(b) z ∈ H is called a �xed point of Γ i�. there exists a T 6= ±Id ∈ Γ having
z as a �xed point.

(c) The stabilizer of z ∈ H, Γz is de�ned to be the set of all such T ∈ Γ
having z as a �xed point. It is a subgroup of Γ (direct computation!). The
homogeneous version will be referred to as Γ̂z = Φ(Γz) = Γz/{(+−)Id}.

Before we start with the main part of this section, we de�ne some special
matrices in SL2(Z) that we will need regularly and compute their �xed points.

2.2.2 De�nition.

U :=

(
1 1
0 1

)
, V :=

(
0 −1
1 0

)

P := V U =

(
0 −1
1 1

)
, P 2 =

(
−1 −1
1 0

)
We have

V z = z ⇐⇒ −1

z
= z

⇐⇒ −1 = z2

⇐⇒ z = ±i
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and analogously Pz = z ⇐⇒ z2 + z + 1 = 0. This equation has the
solution % := e2πi/3 because

%2 + %+ 1 = e
2πi
3

2 + e
2πi
3

1 + e
2πi
3

0

= sum over the third roots of unity

= 0 (2.1)

by writing the sum as a �nite geometric series. Since the coe�cients are real,
the complex conjugate % is the second solution. As we will only be interested
in �xed points in H, the solutions −i, % will be unimportant to us.

The �xed points of P are therefore % and % and those of V are ±i. Since
+P and −P , +V and −V respectively, to act the same on H, we also found
the �xed points of −P and −V . The same calculation as above shows that
±P 2 also has the �xed points % and %.

We will now formulate our main goal in this section

2.2.3 Theorem. The stabilizers of the points ∞, i, % ∈ H are given by

SL2(Z)∞ = {±Uk | k ∈ Z}

SL2(Z)i = {±Id,±V }

SL2(Z)% = {±Id,±P,±P 2}

Summarized we have for arbitrary z ∈ H:

SL2(Z)z =


L{±Uk | k ∈ Z}L−1 = 〈−Id, LUL−1〉 if z = L.∞ for L ∈ SL2(Z)

L{±Id,±V }L−1 = 〈−Id, LV L−1〉, if z = L.i for L ∈ SL2(Z)

L{±Id,±P,±P 2}L−1 = 〈−Id, LPL−1〉, if z = L.% for L ∈ SL2(Z)

{+Id,−Id} = 〈+Id,−Id〉 else

(2.2)
in particular the stabilizers are never cyclic. For the homogeneous versions
we have

ŜL2(Z)z =


〈Φ(LUL−1)〉 if z = L.∞ for some L ∈ SL2(Z)

L{Φ(Id),Φ(V )}L−1, if z = L.i for some L ∈ SL2(Z)

L{Φ(Id),Φ(P ),Φ(P 2)}L−1, if z = L.% for some L ∈ SL2(Z)

{Φ(Id)} else

(2.3)
in particular all homogeneous stabilizers are cyclic.
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Proof. Step 1: Figuring out the potential �xed points. For doing this we need
a preparatory lemma.

2.2.4 Lemma. Given T =
(
a b
c d

)
∈ SL2(Z) then either |TrT | > 2 � then

T is of in�nite order and its �xed points are in R \ Q or T is conjugate to

S =
(
α β
γ δ

)
∈ SL2(Z) where S is as shown in Table 1.

Table 1: Possible conjugate matrices for T

t = α+ δ = a+ d α β γ δ S

0 0 ∓1 ±1 0 ±V
0 1 P,−V −1P 2V

1
1
∓1 ±1

0 −P 2, V −1PV

0 −1 −P, V −1P 2V−1 −1
∓1 ±1

0 P 2,−V −1PV

2 1 k 0 1 Uk

−2 −1 −k 0 −1 −Uk

Proof. See [Ra 77], Thm. 1.2.3, p. 10.

Let T =
(
a b
c d

)
∈ SL2(Z), T 6= Id be given and let z ∈ H be a �xed point

of T . We claim that

�xed points of SL2(Z) in H ⊂ [∞] ∪ [%] ∪ [i] (2.4)

where % = e2πi/3.
First we want to eliminate the case where c = 0. If c = 0 then a = d = ±1

and T = +Uk or T = −Uk for some k ∈ Z where k = ±b. In both cases,
Tz = z means z± d = z which implies z =∞. The case d = 0 cannot occur
as T 6= Id. Consequently, (2.4) is correct for these �xed points. From now
on we assume c 6= 0. We then rewrite the equation Tz = z as

Tz = z ⇐⇒ az + b

cz + d
= z

⇐⇒ az + b = cz2 + dz

⇐⇒ cz2 + (d− a)z − b = 0

Since c 6= 0, we �nd the solutions of this polynomial equation by the p/q-
Formula to be:

z =
(a− d)±

√
Tr(T )2 − 4

2c

13



The nature of the roots depends on the sign of the expression under the root.
1st case: Tr(T ) = 0

By Lemma 2.2.4, T a conjugate of ±V so there is some L ∈ SL2(Z) with
T = ±L−1V L. We obtain

Tz = z ⇐⇒ (±L−1V L).z = z

⇐⇒ ±V.L.z = L.z

⇐⇒ L.z is a �xed point of ±V
⇐⇒ L.z = ±i
⇐⇒ z ∈ [i]

z = −i can never happen as z ∈ H and so Lz ∈ H but −i /∈ H.
2nd case: Tr(T ) = ±1

Completely analogously, T is conjugate to ±P or ±P 2 or ±V −1PV
(±V −1P 2V respectively) which is in turn conjugate to P (P 2 respectively)
so z ∈ [%] in this case (as above, Lz = % can never happen).
3rd case: Tr(T ) = ±2 Completely analogously, T is conjugate to ±Uk so
Lz =∞ by the (c = 0)�case or in other words: z ∈ [∞].
4th case: |Tr(T )| > 2 We show that for Tz = z we have z ∈ R \Q so z /∈ H
(i.e. contradiction to the assumption z ∈ H). Note that

z ∈ R \Q ⇐⇒
√

(a+ d)2 − 4 ∈ R \Q ⇐⇒ (a+ d)2 − 4 is not a square

the last "⇐⇒ " is shown precisely as one shows that
√

2 /∈ Q. For if k is a
positive integer with prime factor decomposition pe11 · · · perr with, say e1 odd,
then

√
k ∈ Q⇒ ∃α, β ∈ Z

√
k =

α

β
with gcd(α, β) = 1

⇒ β2pe11 · · · p
er
r = α2

⇒ β = px1 · · · , α = py1 · · · and 2x+ e1 = 2y

⇒ x 6= 0 as otherwise 0 ≡ 2y = 2x+ e1 = e1 mod 2

(Contradiction as e1 is odd.)

⇒ p1 divides α and β

⇒ Contradiction to gcd(α, β) = 1

So all we have to show is that (a + d)2 − 4 is not a square. Let t :=
(a + d) = Tr(T ) and assume for a moment this was the case, then by as-
sumption t2 − 4 > 0 so there was an x ∈ Z \ {0} with t2 − 4 = x2 ⇒

14



(t − x)(t + x) = t2 − x2 = 4. The only possible ways to factor the number
4 in Z are given by ((t − x), (t + x)) ∈ {(±1,±4), (±2,±2), (±4,±1)}. By
adding both equations we obtain in the �rst case that 2t ∈ {−5,−3, 3, 5},
i.e. t ∈ {−5/2,−3/2, 3/2, 5/2} which clearly contradicts the fact that t ∈ Z.
The third case is shown analogously and in the second case we obtain that
x = 0, again by adding both equations. Thus, (a + d)2 − 4 is not a square
and therefor z ∈ R \Q.

In particular we have shown z /∈ R \Q ∪ [∞] ∪ [%] ∪ [i]⇒ Γz = {+Id,−Id},
i.e. the fourth line of the claimed case-distinction is correct.
A direct computation shows that, since we have used " ⇐⇒ " only, we can
do all calculations backwards and obtain moreover

�xed points of SL2(Z) in H = [∞] ∪ [%] ∪ [i]

Step 2: The �xed points in the orbits of i, % and∞. We analyze the nontrivial
�xed points a little further.

2.2.5 Lemma. Let Γ be a subgroup of SL2(Z) and x, y be two congruent
points modulo Γ in H, such that there is an L ∈ Γ with Lx = y, then

Γy = LΓxL
−1

Consequently, for the homogeneous versions (as Φ is multiplicative):

Γ̂y = Φ(Γy) = Φ(LΓxL
−1) = LΦ(Γx)L−1 = LΓ̂xL

−1

Proof.

T ∈ Γy ⇐⇒ Ty = y

⇐⇒ TLx = Lx (y = Lx)

⇐⇒ L−1TLx = x

⇐⇒ L−1TL ∈ Γx

⇐⇒ T ∈ LΓxL
−1

3rd Step: Putting it all together. Step 1 tells us that we only have to
analyze the stabilizers of points x ∈ [∞] ∪ [%] ∪ [i]. Step 2 tells us that it
su�ces to compute the stabilizers of the points i, % and ∞ itself and thus,
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this is what we will do now: The "⊃"-direction has been done right after
de�nition 2.2.2 so it remains to show:
SL2(Z)∞ ⊂ {±Uk | k ∈ Z}: Let T =

(
a b
c d

)
∈ SL2(Z) so that a/c = T.∞ =

∞. The only possibility is c = 0 and hence a = d = ±1 and thus T =
( 1 c

0 1 ) = U c.
SL2(Z)i ⊂ {±Id,±V }: Let T =

(
a b
c d

)
∈ SL2(Z) so that (ai + b)/(ci + d) =

T.i = i. Then ai+ b = i(ci+ d) = −c+ di. Comparing real- and imaginary
part yields b = −c, a = d so T =

(
a b
−b a

)
. Since ±1 = det(T ) = a2 + b2

the only possible solutions for a and b are a = 0, b = ±1 or vice versa, i.e.
T = ±V or T = ±Id.
SL2(Z)% ⊂ {±Id,±P,±P 2}: Let T =

(
a b
c d

)
∈ SL2(Z) so that (a%+ b)/(c%+

d) = T.% = %. Then a% + b = %(c% + d) and since %2 = −(% + 1), cf (2.1),
a%+b = %(−c+d)−c. Writing % = α+iβ and comparing real- and imaginary
part yields

aα+ b = (−c+ d)α− c and aβ = (−c+ d)β (2.5)

hence, as β 6= 0, a = (−c + d). Substituting this into the �rst equation

in (2.5), we obtain b = −c and thus T =
(

(b+d) b
−b d

)
. The equation on the

determinant then reads 1 = det(T ) = bd+ b2 + d2. In the case where bd ≥ 0
we have 1 = bd + b2 + d2 ≥ b2 + d2 so b = 0, d = ±1 (i.e. T = ±Id) or
b = ±1, d = 0 (i.e. T = ±P 2) are the only solutions. In the case where
bd < 0 we have 1 = bd+b2 +d2 > bd+bd+b2 +d2 = (b+d)2 thus |b+d| < 1
and consequently b+ d = 0. Substituting this into the determinant equation
yields d = ±1 (and therefor b = ∓1 and thus T = ±P ).
Now we apply Lemma 2.2.5 to x = i, %,∞ and y = L.x in the orbit of x.
According to what we have just computed, this yields

Γy = ΓL.z = LΓxL
−1

Since Φ is multiplicative, the assertion concerning the homogeneous stabiliz-
ers Γ̂z follows by

Φ(〈−Id,X〉) = 〈Φ(Id),Φ(X)〉 = 〈X̂〉

substituted for X = V, P or U .

Now we want to characterize the homogeneous stabilizers of a subgroup Γ
of SL2(Z) with a �nite index in the same way. We remark that by de�nition,
Γz = SL2(Z)z ∩ Γ.
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We �rst note that the stabilizers Γz (Γ̂z respectively) are subgroups of

SL2(Z)z (ŜL2(Z)z respectively) by construction. For a �ner analysis of the
stabilizer of the points L.∞ we need some preparation:

2.2.6 Lemma. Let H be a subgroup of a group G having a �nite index, then
for each element S ∈ G, there is a �nite natural number n such that Sn ∈ H
and a unique smallest natural number nS with SnS ∈ H.

Proof. Consider the right cosets [Id], [S], [S2], [S3], ... in G/H. Since the
index is �nite, G/H is �nite so at some point, two of the cosets must be
the same, say [Si] = [Sj ] for some i, j ∈ N and after switching i, j we may
assume i < j. [Si] = [Sj ] implies that there is a T ∈ H such that Si = TSj .
Multiplying this equation with S−i yields Id = TSj−i so Sj−i = T−1 ∈ H
means that 0 ≤ j − i is one possible n. Now nS := min{n ∈ N | Sn ∈ H}
exists as the set is not empty.

2.2.7 Lemma. Let G be a cyclic group, say G = 〈S〉 and let H be a subgroup
of G having a �nite index, then H is also cyclic and

H = 〈SnS 〉, G/H = {[Id], [S], ..., [Sns − 1]}

and in particular [G : H] = nS where nS is as in the lemma above

Proof. Analogously to the proof that subgroups of Z are of the structure NZ
for some N ∈ N.

2.2.8 Corollary. Let Γ be a subgroup of SL2(Z) having a �nite index, then

for each element S ∈ ŜL2(Z) there is a unique �nite smallest natural numbers
n̂ such that Ŝn̂ ∈ Γ̂.

2.2.9 Corollary. Let Γ be a subgroup of SL2(Z) having a �nite index, then
for each element S ∈ SL2(Z) there is a unique �nite smallest natural numbers
n such that Sn ∈ Γ̂.

Proof. Substitute H = Γ and G = SL2(Z) (H = Γ̂, G = ŜL2(Z) respectively)
and apply the above lemma.

2.2.10 Theorem. Let Γ be a subgroup having �nite index in SL2(Z), then
the homogeneous stabilizers of all z ∈ H are cyclic. More precisely:

Γ̂z =


〈Φ(LUnLL−1)〉 if z = L.∞
{Φ(Id),Φ(LV L−1)}, if z = L.i and Φ(LV L−1) ∈ Γ̂

{Φ(Id),Φ(LPL−1),Φ(LP 2L−1)}, if z = L.% and Φ(LPL−1) ∈ Γ̂

{Φ(Id)} otherwise
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Proof. If z /∈ [∞] ∪ [i] ∪ [%] but z ∈ H, then by equation (2.4), SL2(Z)z =

{±Id} and therefore Γ̂z ⊆ ŜL2(Z)z = {Φ(±Id)} hence Γ̂z = {Îd}.
The case z = L.∞: Given z = L.∞, by Lemma 2.3, the stabilizer of

ŜL2(Z)L.∞ is given by 〈Φ(LUL−1)〉 with generator S := SL := Φ(LUL−1) =

L̂Û L̂−1. For readability we identify L,U, Id with Φ(L),Φ(U),Φ(Id) from
now on for the rest of this case, i.e. whenever we write L,U, Id we actually
mean Φ(L),Φ(U),Φ(Id). If we apply Corollary 2.2.8 to the generator S of
the stabilizer we obtain unique smallest n̂L such that Sn̂L = LU n̂LL−1 ∈ Γ̂
and

ŜL2(Z)z/Γ̂z = {[Id], [LUL−1], ..., [LU n̂LL−1]}

(where [·] denotes the class of "·" in the quotient ŜL2(Z)z/Γ̂z). Further, by
Lemma 2.2.7, we have

[ŜL2(Z)L.∞ : Γ̂L.∞] = n̂L

and
Γ̂L.∞ = {Id, LU n̂LL−1, LU2n̂LL−1, ...} = 〈LU n̂LL−1〉

The cases z = L.i, z = L.%: Here we see that an 'all-or-nothing-principle'
applies, meaning that either the stabilizer Γ̂z stays at its full size or col-
lapses to {Φ(Id)}. In the case z = L.i either Φ(LV L−1) in Γ̂ (then the
stabilizer has size 2 hence is the same as the stabilizer in the big group

ŜL2(Z)) or Φ(LV L−1) /∈ Γ̂, then the stabilizer must be a subset of ŜL2(Z)z \
{Φ(LV L−1)} = {Φ(Id)} hence it must actually be {Φ(Id)}. Analogous ar-
guments apply to z ∈ [%] because the di�erence between P and P 2 can be
omitted as Φ(LPL−1) ∈ Γ̂ ⇐⇒ Φ(LP 2L−1) ∈ Γ̂ because in this case,
squaring leads from one to the other (and back!).

The 'all'-points in H in the 'all-or-nothing-principle' of the homogeneous
stabilizers (or more precisely: their orbits) will be of interest later on so we
de�ne:

2.2.11 De�nition. Let Γ be a subgroup of SL2(Z) having �nite index, then
we de�ne the sets

E2(Γ) := {JzK ⊂ H | z = L.i for some L ∈ SL2(Z) and Φ(LV L−1) ∈ Γ̂}

E3(Γ) := {JzK ⊂ H | z = L.% for some L ∈ SL2(Z) and Φ(LPL−1) ∈ Γ̂}

E(Γ) := E2(Γ) ∪ E3(Γ), E2 = E2(SL2(Z)), E3 = E3(SL2(Z)), E = E2 ∪ E3
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Note that these sets do not contain points as it but rather their orbits
modulo the smaller group. The reason for this is that the the describing
quantities of the "behavior" of f do not depend on the concrete point but
rather on the orbit. Also not that proposition 2.3.5 will tell us later that for
di�erent representatives z1, z2 of the same �xed-point orbit, the generators of
the stabilizers do only vary by multiplication with elements in Γ̂ so whether
or whether not Φ(LV L−1) ∈ Γ̂ (Φ(LPL−1) ∈ Γ̂ respectively) does not de-
pend on the concrete representative, i.e. E2(Γ),E3(Γ) are well de�nitions.

Described in a visual way, let R̂ = {R̂1, ..., R̂n} be an RRS for ŜL2(Z)/Γ̂,
then the orbit [i] decomposes into a disjoint union of sevaral 'smaller' orbits

[i] = SL2(Z).i = Γ̂.R̂.i = Γ̂.{R̂1, ..., R̂n}.i = JR1.iK ∪̇ ... ∪̇ JRn.iK

and E2(Γ) collects all those 'smaller' orbits for which the stabilizer does not
collapse.

2.2.12 Remark. Note that in this case we used the homogeneous versions of
the groups all the time. This is very important in this case: by the usage of
the term "�xed point" we mean that there is an action in the set of actions
induced by the subgroup that leaves the point �xed. We do not want the
matrix in Γ to have a certain sign. For example: we will show in Theorem
4.3.1 that the subgroup Γ1(3) possesses only one �xed point (orbit), namely
the orbit of Q = 1/2 + i

√
3. The matrix that leaves Q �xed is T =

(−2 1
−3 1

)
.

T is conjugate to −P but we will also show in 4.3.1 that there is no matrix
T ′ ∈ Γ1(3) conjugate to +P . As in the case for SL2(Z), the inhomogeneous
stabilizers are not cyclic but as they are uninteresting to us we will skip the
exact analysis of them.

2.3 Cusps and their width

2.3.1 De�nition. (a) For Γ a subgroup of SL2(Z), z ∈ H, the set trΓ(z) :=
{JwK | w ∈ [z]} is called the trace of z (modulo Γ). Again, we will sup-
press Γ and will just write tr(z) in place of trΓ(z).

(b) Representatives of the equivalence classes in tr(∞) are called cusps and
their class in tr(∞) is called cusp orbit. We will also denote cu(Γ) :=
tr(∞).

It is easy to see that whether or whether not w ∈ [z] does not depend
on the concrete representative of JwK so tr(z) is well-de�ned. Also note
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that a direct computation shows that after choosing an RRS for ŜL2(Z)/Γ̂,

R̂ = {R̂1, ..., R̂n}, we have

{JwK | w ∈ [z]} = SL2(Z).z/≈ = Γ̂.R̂/≈ = Γ̂.R1.z ∪̇ ... ∪̇ Γ̂.Rn.z,

i.e. for knowing the trace of z it su�ces to translate z with an RRS and
then consider the orbits of all these �nitely many RRS-translations of z.

2.3.2 Example. In SL2(Z), the cusps are given by P (recall that P = Q ∪
{∞}). This can be shown as follows: Let any a′/c′ be in Q. By canceling
out every possible divisor we achieve a′/c′ = a/c and gcd(a, c) = 1. From
general algebra we know that then, there are integers b, d such that ad−bc =
gcd(a, c) = 1, i.e. the matrix T =

(
a b
c d

)
is in SL2(Z). Now a′/c′ = a/c =

T.∞ ∈ SL2(Z).∞ = [∞] ⊆ Q ∪ {∞} = P.

2.3.3 Example. The subgroup Γ0(2) possesses two cusps and the trace of
∞ is {J0K , J∞K} and 0,∞ are incongruent modulo Γ0(2). Justi�cation: to
show: {JwK | w ∈ [∞]} = {J0K , J∞K}. "⊇": 0,∞ ∈ [∞] as Id.∞ = ∞ and(

0 1
−1 0

)
.∞ = 0. "⊆": let w ∈ [∞] = P s.t. w 6= ∞, then w = x/y for

some x, y ∈ Z and by canceling out all common divisors we may assume
gcd(x, y) = 1 so there are integers u, v such that ux + vy = gcd(x, y) = 1.
1st case: y is even, then T =

(
x −v
y u

)
∈ Γ0(2) as y is even and det(T ) =

xu − y(−v) = xu + yv = 1 and furthermore, T.∞ = x/y = w so w ∈
J∞K. 2nd case: y is odd. We may assume that u is even as otherwise we
can also set u′ = u − y, v′ = v + x and still solve u′x + v′y = 1 because
u′x + v′y = (u − y)x + (v + x)y = ux + vy + xy − xy = ux + vy = 1 but
this time, u′ ≡ u − y ≡ 1 − 1 ≡ 0 mod 2. Then, for T = ( v x

−u y ) we have
T.0 = v0+x

(−u)0+y = x
y = w and T ∈ Γ0(2) as det(T ) = vy−(−u)x = ux+vy = 1

and u is even. Consequently, w = T.0 ∈ J0K. Moreover, 0 and ∞ are
incongruent modulo Γ0(2). Indeed, given a matrix T =

(
a b
c d

)
∈ Γ0(2) so that

c is even, then T.0 = b
d =∞ implies d = 0 so in particular c and d are even

so that 2 | c, 2 | d⇒ 2 | ad− bc = det(T ) = 1 so 2 | 1⇒ contradiction.

Since P = [∞], in SL2(Z), every cusp has the form L.∞ for some L ∈
SL2(Z). We now want to de�ne a quantity called 'width' of the cusp L.∞.
Fix some subgroup Γ of SL2(Z) having a �nite index. Recall from section
2.2, in particular Theorem 2.2.10, that the stabilizer Γ̂z is cyclic for all z ∈ H
and if Γ̂z = 〈±S〉 then some power of S must lie in Γ̂ (see Theorem 2.2.8)
or reformulated as matrices: there is an nS ∈ N with either +SnS ∈ Γ or
−SnS ∈ Γ.
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2.3.4 De�nition. Let Γ be a subgroup of SL2(Z) having a �nite index and
L.∞ a cusp. Let S := LUL−1, then Ŝ = Φ(S) is a generator of the cyclic
homogeneous stabilizer according to Theorem 2.2.10. By Corollaries 2.2.8,
2.2.9, there are unique minimal naturals n̂L, nL with Ŝn̂L ∈ Γ̂ and SnL ∈ Γ.
We de�ne

1. n̂L = min{n ∈ N | Φ(LUnL−1) = Ŝn ∈ Γ̂} to be the homogeneous
width of the cusp L.∞.

2. nL = min{n ∈ N | LUnL−1 ∈ Γ} to be the inhomogeneous width of
the cusp L.∞.

There is a detail hidden in this de�nition. For a given cusp c = L.∞, we
want to write n̂c, nc and not n̂L, nL. Until now, the width has the possibility
to "look how∞ got there", i.e. we have only de�ned the width for given cusp
and transformation matrix that brings∞ to the cusp. In Γ1(3) for example,
there are many di�erent ways how to get from ∞ to 0, i.e.

(
0 −1
1 0

)
.∞ = 0

but also
(

0 −1
1 17

)
.∞ = 0. The arising question is: are n̂0, n0 as de�ned with

both matrices the same? The following will answer this positively:

2.3.5 Proposition. Let L,M ∈ SL2(Z) both mapping in�nity to the cusp
c = L.∞ = M.∞, then both � homogeneous and inhomogeneous width � do
not depend on L or M but rather only on the cusp c, i.e. n̂L = n̂M and
nL = nM , so "nc := nL for any L ∈ SL2(Z) with c = L.∞" is well-de�ned.

Proof. Since L.∞ = M.∞, we have L−1M.∞ = ∞ so L−1M ∈ SL2(Z)∞
and thus there is a k ∈ Z such that L−1M = ±Uk. Then the matrix S
mentioned in the de�nition of nL and nM is actually the same. In the "+"
case we have

SM = MUM−1 = LUkUU−kL−1 = LUL−1 = SL

so in particular for any n ∈ N, SnM ∈ Γ ⇐⇒ SnL ∈ Γ so nL = nM in this
case. In the "−" case we have

SM = MUM−1 = (−L)UkUU−k(−L−1) =��
�

(−1)2LUL−1 = SL

so in particular for any n ∈ N, SnM ∈ Γ ⇐⇒ SnL ∈ Γ so nL = nM is also
valid here. In the homogeneous situation the di�erent sign does not matter
at all as

L−1M = ±Uk ⇒ Φ(M) = Φ(L)Φ(U)k

anyway.
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Although this may look a little complicated, it eases up the main proofs
afterwards because for a cusp c ∈ P, we directly want to consider an arbitrary
(but �xed) matrix L ∈ SL2(Z) that brings∞ to c and the notation nL already
includes this. Remark that we follow the notation of [Ra 77] here.

The distinction between n̂L and nL is necessary as in some situations they
are unequal. As this case will have an impact on the calculations afterwards
we will separate these cases more clearly:

2.3.6 De�nition. Let c = L.∞ be a cusp, then c is called a regular cusp if
nc = n̂c, otherwise it is called an irregular cusp.

2.3.7 Example. Irregular cusps exist: Take Γ = Γ1(4) then for the cusp
1/2 = L.∞ = ( 1 1

2 3 ) .∞, we have S := LUL−1 =
(−1 1
−4 3

)
so S1 /∈ Γ but

−S ∈ Γ so n̂L = 1 but nL > 1.

2.3.8 Remark. If nL 6= n̂L, then nL = 2n̂L. Set S = LUL−1, then by
de�nition of n̂L,±Ŝn̂L ∈ Γ̂ but +Sn̂L ∈ Γ is impossible as then nL ≤ n̂L
(and n̂L ≤ nL is clear anyway) but nL 6= n̂L was assumed, so −Sn̂L ∈ Γ.
Consequently, S2n̂L = (−Sn̂L)2 ∈ Γ · Γ = Γ, therefore nL ≤ 2n̂L. Assume
nL < 2n̂L i.e. nL = n̂L + r for 0 < r < n̂L, then SnL ∈ Γ,−Sn̂L ∈ Γ ⇒
(−Sn̂L)−1 ∈ Γ so −Sr = Sn̂L+r · (−1) ·S−n̂L = SnL · (−Sn̂L)−1 ∈ Γ and thus
n̂L ≤ r < n̂L. Contradiction.

2.4 Modular forms

From now on we will assume that k ∈ Z is a �xed integer. We assume this
because in general (for k ∈ R), z, w ∈ C, (zw)k 6= zkwk but of course, for
integers this works and this will ease up some of the computations below.

2.4.1 De�nition. For T =
(
a b
c d

)
∈ SL2(Z) and z ∈ H we de�ne (T : z) to

be cz + d and µ(T, z) := (T : z)k.

2.4.2 Proposition. [ST-identity] For any S, T ∈ SL2(Z), z ∈ C we have
(ST : z) = (S : Tz)(T : z) and in particular for S = −Id we have (−T :
z) = −(T : z).

Proof. Direct computation.

2.4.3 De�nition (Modular form). Let Γ be a subgroup of SL2(Z) having a
�nite index. We de�ne for any L ∈ SL2(Z) (not necessarily L ∈ Γ!) the
L-transform of f to be fL : H → C, fL(z) = 1

µ(L,z)f(L.z). Each function
f : H→ C that possesses the properties
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(I) f is holomorphic on H.

(II) f transforms under Γ: for all T =
(
a b
c d

)
∈ Γ, f(T.z) = (cz+ d)kf(z).

(III) For every L ∈ SL2(Z), fL has a Fourier expansion of the form

fL(z) =
∞∑
n=0

ane
2πinz/nL

for suitable (an)n∈N ⊂ C.

is called a modular form for Γ of weight k.
For a subgroup Γ of SL2(Z), the set of all such f of weight k will be

referred to asM(Γ, k) and the set of all modular forms in general (of arbitrary
weight) will be denoted M(Γ).

Throughout this document (if not explicitly de�ned otherwise), f will de-
note a modular form for a subgroup Γ.

We remark that if f is a modular form and G ∈ Γ, then fG ≡ f . We now
want to get a better understanding of condition (III). The following theorem
states that (III) consists of the requirement that the coe�cients start with
a positive index (i.e. that an = 0 for n < 0) and not in the condition that a
Fourier expansion exists, because this is an implication from conditions (I)
and (II):

2.4.4 Theorem. Let Γ be a subgroup of SL2(Z) of �nite index and f be a
function that satis�es condition (I) and (II), then

(a) fL is nL-periodic, i.e. fL(z + nL) = fL(z) ∀z ∈ H

(b) There always exists a Fourier expansion of fL of the form

fL(z) =
∞∑

n=−∞
ane

2πinz/nL

possibly containing an in�nite number of terms carrying a negative index.

Proof. (a): Let L =
(
l1 l2
l3 l4

)
∈ SL2(Z) and de�ne S = LUnLL−1. By de�ni-

tion of nL, S ∈ Γ. Also note that LUnL = SL. With this we can write
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fL(z + nL) = fL(UnLz)

=
1

(L : UnLz)k
f(LUnLz)

=
1

(L : UnLz)k
f(SLz)

=
1

(L : UnLz)k
(S : Lz)kf(Lz)

(f satis�es (II), S ∈ Γ)

=
1

(L : UnLz)k
(S : Lz)k(L : z)k︸ ︷︷ ︸
:=g(z)

1

(L : z)k
f(Lz)︸ ︷︷ ︸

=fL(z)

= g(z)fL(z)

It remains to show that the function

g : z 7→ (S : Lz)k(L : z)k

(L : UnLz)k

is constantly one:
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g(z) =
(S : Lz)k(L : z)k

(L : UnLz)k

=

(
(L(UnLL−1) : Lz)(L : z)

(L : UnLz)

)k
(S = LUnLL−1)

=

(
(L : UnL���

�(L−1L)z)(UnLL−1 : Lz)(L : z)

(L : UnLz)

)k
by (2.4.2)

=

����
��

(L : UnLz)

=0z+1=1︷ ︸︸ ︷
(UnL : L−1Lz)(L−1 : Lz)(L : z)

���
���(L : UnLz)


k

by (2.4.2)

= [(L−1 : Lz)(L : z)]k

= [[(−l3)Lz + l1](L : z)]k

=

([
(−l3)

l1z + l2
l3z + l4

+ l1

]
(L : z)

)k
=

([
���

�−l3l1z − l3l2 +��
�l1l3z + l1l4

l3z + l4

]
(L : z)

)k
=

(
det(L)

L : z
(L : z)

)k
= 1k = 1

(b): Consider the mapping α : z 7→ e
2πiz
nL then α maps H surjectively

to B1(0) = {t ∈ C | |t| < 1} (it 'increases' the density by 'pushing' z ∈ H
to t ∈ B1(0)) and we can make α continuous in the extended topology by
setting α(∞) = 0 i.e. α "switches" the roles of 0 and ∞. One of the many
"inverse" mappings is given by β : t 7→ nL Log(t)/2πi in the sense that
α(β(t)) = t. This mapping is neither holomorphic nor continuous because
Log is discontinuous in all z ∈ R−. However: the map G : B1(0) \ {0} 7→
H, G(t) = fL(β(t)) is actually holomorphic: For t0 ∈ B1(0) we �rst select
a branch of the complex logarithm that exists in an open neighborhood U
around t0, LogU . Then, the function βU : t 7→ nL LogU (t)/2πi and hence
GU : t 7→ fL(βU (t)) is holomorphic on U as a composition of such. Now we
use (a) to show that GU (t) = G(t) for all t ∈ U . For all t ∈ U we know from
complex analysis that LogU (t) = logR |t| + iph(t) + 2πid = Log(t) + 2πid
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where d = dU ∈ Z only depends on U . Hence

GU (t) = fL(βU (t))

= fL

(
nL LogU (t)

2πi

)
= fL

(
nL Log(t)

2πi
+
��2πidnL

��2πi

)
= fL

(
nL Log(t)

2πi

)
(as fL is nL-periodic and d ∈ Z)

= G(t)

So G = GU is locally holomorphic on U around t0. The same arguments
apply to arbitrary t0 ∈ B1(0) \ {0} (using a localized branch Logt0 of the
complex logarithm for every t0). From complex analysis, we now know that
for the function G, a Laurent series exists around 0:

G(t) =
∞∑

n=−∞
ant

n

Note that we have by construction G(t) = fL(nL Log(t)/2πi) so if any z ∈ H
is given, then

G(e2πiz/nL) = fL(nL Log(e2πiz/nL)/2πi) = fL(nL2πiz/2πinL) = fL(z)

i.e. in short fL(z) = G(α(z)). Hence:

fL(z) = G(α(z)) =
∞∑

n=−∞
ane

2πinz
nL

.

2.4.5 Remark. Note that in the computation of 2.4.4(a) we explicitly used
the di�erence between nL and n̂L, i.e. in general, the function fL is not n̂L
periodic for if k is odd and +S /∈ Γ but −S = −LU n̂LL−1 ∈ Γ (i.e. in the
case where nL 6= n̂L), the step

f(SLz) = (S : Lz)kfL(Lz)

is invalid as +S is not in the subgroup anymore. Still, −S ∈ Γ and S,−S
induce the same action so one could write

f(SLz) = f(−SLz) = (−1)k(S : Lz)kfL(Lz)
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and all in all we therefore obtain

fL(z + n̂L) = (−1)g(z)fL(z) = −fL(z)

so in particular, if k is odd, the only form being n̂L periodic is the zero form
(fL(z) = fL(z + n̂L) = −fL(z) implies fL(z) = 0 for all z ∈ H and hence
f(z) = 0 for all z as z 7→ Lz is a bijection).

2.4.6 De�nition. The functions G and β that have been used in the proof
above for the cusp L.∞ will be called GL and βL from now on, i.e.

GL : B1(0) \ {0} 7→ H, GL(t) = fL(h(t))

βL : B1(0) \ {0} 7→ H, βL(t) =
nL Log(t)

2πi

Moreover we will write qL = e2πiz/nL in place of αL(z) (in order to emphasis
the role of t = e2πiz/nL as a new variable) and q = e2πiz.

The task of αL(z) was to switch the positions of 0 and∞. This can be made
more precise:

2.4.7 Theorem. Let f be a function satisfying conditions (I) and (II), then

f satis�es condition (III)

⇐⇒ for all cusps L.∞, GL is holomorphic at 0

:⇐⇒ f is holomorphic at L.∞
:⇐⇒ fL is holomorphic at ∞
:⇐⇒ fL is continuous at ∞
:⇐⇒ There is a c ∈ C s.t. for all sequences (zn)n∈N with

Im(zn)→∞, lim
n→∞

fL(zn) = c

If these conditions are met, then a0 of the Laurent series of GL is actually
c. For such sequences, we will write shorter zn → i∞ and fL(i∞) = c.

Proof. "⇒": f satis�es (III) then G := GL can be developed into a power
series (which has a radius of convergence 1 and therefore converges uniformly
in B 1

2
(0) including 0!), hence G(0) := a0 makes G continuous on the whole

circle B1(0) with 0 included and by Riemann's theorem on removable singu-
larities, this already makes G holomorphic. Given any sequence zn → i∞,
α(zn)→ 0 as the imaginary part controls |eiz| because

|eiz| = |eiRe(z)|︸ ︷︷ ︸
=1

|e− Im(z)|︸ ︷︷ ︸
→0 for Im(z)→ +∞
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so fL(zn) = G(α(zn))→ G(0) = a0.
"⇐": Let c be a constant such that f(i∞) = c, then we have to show that
G is holomorphic at 0. By Riemann's theorem on removable singularities,
it su�ces to show that G is continuous at 0 so let (tn)n∈N ⊂ B1(0) be a
sequence converging to 0.

G(tn) = fL(β(tn))

= fL

(
nL Log(tn)

2πi

)
= fL

(
i
−nL logR |tn|

2π
+

ph(tn)

2π

)
︸ ︷︷ ︸

:=zn

(2.6)

We have
Im(zn) =

nL
2π
· (− logR |tn|)︸ ︷︷ ︸

→+∞

→ +∞

because as tn → 0, so does |tn| so that logR |tn| → −∞ and therefore
− logR |tn| → +∞. Consequently, G(tn) = f(zn) → f(i∞) = c by the
assumption and G is continuous and �nally holomorphic in B1(0) with 0 in-
cluded. Therefore, in a small neighborhood U around 0, G can be developed
in a power series G(t) =

∑∞
n=0 bnt

n. Since power series are unique, the series
from (2.4.4) on B1(0) ⊃ U must coincide with the one on U , i.e. an = bn for
all n ∈ N. Therefore

fL(z) = G(α(z)) =

∞∑
n=−∞

anq
n =

∞∑
n=0

bnq
n

and f satis�es condition (III).

2.4.8 Corollary. Let f be a function satisfying conditions (I) and (II) and
let fL be holomorphic at in�nity in the sense that there exists a c ∈ C such
that fL(i∞) = c, then c is the �rst term a0 in the Laurent series of GL,
respectively in the Fourier expansion of fL. In particular we can check for a
zero at the cusp L.∞ by computing the limit of fL for z → i∞.

Proof. a0 = limt→0GL(t) = limz→i∞ fL(z) = c where the last equation
comes from the proof of Theorem 2.4.7, formula (2.6).

Notation: We will use i∞ and ∞ in the same way, i.e. if we write f(∞)
we mean f(i∞).
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We now want to de�ne the quantity called "order" (of f at some point
z0 ∈ H). For z0 ∈ H, we already have a term called order: as f is
holomorphic in a neighborhood U around z0 there exists a power series
f(z) =

∑∞
n=0 an(z − z0)n ∀z ∈ U . We de�ne

ωf (z0) := inf{0 ≤ n ∈ N | an 6= 0}

A somewhat senseful continuation of ωf (z0) for a cusp z0 = L.∞ would be
the �rst occurring term in some Laurent series that describes the behavior
of f at L.∞. Since fL � in a certain sense � does this, we de�ne:

2.4.9 De�nition. For Γ a subgroup of SL2(Z) having �nite index, a cusp
L.∞ and the Fourier expansion

∑∞
n=0 anq

n
L of fL guaranteed by condition

(III), we de�ne
ωf (z0) := inf{0 ≤ n ∈ N | an 6= 0}

.

Again there is a hidden detail in this de�nition: As in the situation of
nz0 = nL (see 2.3.5) we write ωf (z0) but actually mean ωf (L.∞) i.e. again
we give ωf two things: the cusp and the way it got there from ∞. The
question now again is whether this term is independent of the way and just
depends on the cusp. The following will answer this positively but it is a
'theorem' as it will also answer a more central question afterwards:

2.4.10 Theorem. Let Γ be a subgroup of SL2(Z) having �nite index, f a
function that satis�es (I), (II) with weight k ∈ Z and a cusp c = L.∞ = M.∞
for some L,M ∈ SL2(Z), then fL =

∑
n∈Z anq

n
L and fM =

∑
n∈Z bnq

n
M exist

by Theorem 2.4.4(b). As nL = nM (see 2.3.5), fM =
∑

n∈Z bnq
n
L, i.e. we

can chose qL instead of qM here. The claim is that there exists d ∈ Z such
that

bn = εk · ane
2πind
nc

where ε ∈ {+1,−1} and consequently, as εke2πind/nc 6= 0, in particular

inf{0 ≤ n ∈ N | an 6= 0} = inf{0 ≤ n ∈ N | bn 6= 0}.

Thus ωf (z0) is well-de�ned, i.e. ωf (L.∞) = ωf (M.∞).

Proof. Since L.∞ = c = M.∞, we have L−1M.∞ =∞ so by Theorem 2.2.3,
there is a d ∈ Z such that L−1M = εUd for some ε ∈ {+1,−1}. Then the
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following relation holds:∑
n∈Z

anq
n
L = GM (e2πiz/nc) = GM (qM )

= fM (z)

=
1

(M : z)k
f(M.z)

=
1

εk(LUd : z)k
f(LUd.z) (+LUd.z = −LUd.z)

=
1

εk(L : Ud)k(0z + 1)k
f(L.(z + d))

= εk
1

(L : z + d)k
f(L.(z + d))

= εkfL(z + d)

= εkGL(qLe
2πid/nc)

=
∑
n∈Z

(εke
2πind
nc an)qnL

The uniqueness of Laurent series (applied to the functions t ∈ B1(0)\{0} 7→∑
n∈Z(εke

2πind
nc an)tn and t ∈ B1(0) \ {0} 7→

∑
n∈Z ant

n which coincide on
B1(0) \ {0} according to the above) now implies that these series have to
coincide component wise which is the assertion claimed.

This theorem also gives another major insight into condition (III). In-
stead of verifying (III) for every L ∈ SL2(Z), it su�ces to verify this condition
at each cusp, i.e. (III) is not a restriction of the "general behavior" of f but
rather only a restriction of the "behavior near each cusp":

2.4.11 Theorem. Let Γ be a subgroup having �nite index in SL2(Z), f a
function satisfying (I), (II) and let z1 = L1.∞, ..., zn = Ln.∞ ∈ P be a
system of representatives for the cusp orbits of Γ, i.e. cu(Γ) = {Jz1K , ..., JznK}
and let f satisfy (III) for L1, ..., Ln, then f satis�es condition (III) for all
L ∈ SL2(Z).

Proof. Let L ∈ SL2(Z) and since L.∞ ∈ cu(Γ), there is an m with L.∞ =
Lm.∞. Using Theorem 2.4.10, we see that the Laurent expansions of GL
and GLm are the same up to multiplication of a nonzero constant, i.e. since
GLm starts with a term carrying a positive index, so does GL.

30



2.5 Examples of modular forms

We will now construct modular forms of weight 4 for Γ0(2) and weight 3 for
Γ1(3) respectively. We need the following preparatory results:

2.5.1 Proposition. If some function f of weight k ∈ Z transforms correctly
under matrices X,Y ∈ Γ, then it also transforms correctly under X · Y .

Proof.
f(X · Y.z) = f(X.Y.z) = (X : Y.z)kf(Y.z)

= [(X : Y.z)(Y : z)]kf(z)
2.4.2
= (XY : z)kf(z)

.

The assertion of this proposition is that in order to verify condition (II), we
may only verify this condition for generators of the subgroup. Therefore we
need to see that Γ1(3) and Γ0(2) are generated by a few � hopefully relatively
simple to handle � matrices. This is indeed the case:

2.5.2 Lemma. (a) Γ0(2) as a group is generated by the matrices

−Id =

(
−1 0
0 −1

)
, U =

(
1 1
0 1

)
, V U2V −1 =

(
1 0
−2 1

)
(b) Γ1(3) as a group is generated by the matrices

U =

(
1 1
0 1

)
, V U3V −1 =

(
1 0
−3 1

)
Proof. (b): First we need two intermediate results:

∀x, y ∈ Z, y 6= 0⇒ ∃m ∈ Z |x+my| < |y| (*)

Since y 6= 0 so is |y| so that, using the euclidean algorithm, we can write
x = k|y|+ r where k ∈ Z, r ∈ N, 0 ≤ r < |y| and hence we have

|x− k|y|| = x− k|y| as x− k|y| = r and r ≥ 0

= r < |y|

So if y < 0 then |y| = −y and m = +k will do, otherwise we select m = −k.

∀x, y ∈ Z, y 6= 0⇒ ∃m ∈ Z |x+my| < 2

3
|y| (**)
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Using (*), we obtain m ∈ Z so that |x + my| < |y|. If |x + my| < 2/3|y|
already holds then we are done. Otherwise we have |y| > |x+my| ≥ 2/3|y|
and distinguish the following cases:

1st case: x+my ≤ 0, then we have

− |y| < x+my ≤ −2

3
|y|

⇒0 = −|y|+ |y| < x+my + |y| ≤ −2

3
|y|+ |y| = 1

3
|y|

⇒|x+my + |y|| = x+my + |y| ≤ 1

3
|y| < 2

3
|y|

So either m+ 1 or m− 1, depending on whether y < 0 or y > 0 will do.
2nd case: x+my ≥ 0, then we have

2

3
|y| ≤ x+my < |y|

⇒ − 1

3
|y| = 2

3
|y| − |y| ≤ x+my − |y| < |y| − |y| = 0

⇒|x+my + |y|| = −(x+my + |y|) ≤ 1

3
|y| < 2

3
|y|

So either m+ 1 or m− 1, depending on whether y < 0 or y > 0 will do.
Now we begin the main part of the proof: Let M =

(
a b
c d

)
be in Γ1(3).

We will then iteratively construct a sequence

M (1) =
(
a1 b1
c1 d1

)
,M (2) =

(
a2 b2
c2 d2

)
, ...

such that
|c| > |c1| > |c2| > ...

so the |ci| will form a strictly decreasing chain in N which � after �nitely
many steps � has to stagnate at |cN |. We will only show how to get from M
to M1 as the rest is done inductively. First we see that

U±mM =

(
a+mc ∗

c ∗

)
and

(V U3V −1)±mM = (V U±3mV −1)M =

(
a ∗

c∓ 3ma ∗

)
i.e. using U , we can move a in step width of c without touching c and using
V U3V −1, we can move c with a step width of 3a without touching c. Using
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(**), applied to a, c, we obtain m ∈ Z s.t. |a + mc| < 2/3|c|. Thus, for the
matrix

M ′ = UmM =

(
a′ ∗
c ∗

)
where a′ = a + mc and |a′| < 2/3|c|. the crucial step now is that we can
decrease the size of c using a′: We claim that there is an m′ ∈ Z with
|c+ 3m′a| < |c|. To prove this we distinguish the following cases:

1st case: a′ > 0, c > 0. Then

|c− 3a′| < |c| = c

m
c− 3a′ < c ⇐⇒ −3a′ < 0 ⇐⇒ a′ ≥ 0 X (by assumption)

and

−c+ 3a′ < c ⇐⇒ 3a′ < 2c ⇐⇒ a′ <
2

3
c

and the latter one is true because a′ = |a′|, c = |c| as both are positive and
|a′| < 2/3|c| by (**).

2nd case: a′ < 0, c > 0. Then

|c+ 3a′| < |c| = c

m
c+ 3a′ < c ⇐⇒ 3a′ < 0 ⇐⇒ a′ < 0 X (by assumption)

and

−c− 3a′ < c ⇐⇒ −3a′ < 2c ⇐⇒ −a′ < 2

3
c

and the latter one is true because −a′ = |a′|, c = |c| and |a′| < 2/3|c| by
(**).

3rd case: a′ > 0, c < 0. Then

|c+ 3a′| < |c| = −c
m

c+ 3a′ < −c ⇐⇒ 3a′ < −2c ⇐⇒ a′ <
2

3
(−c)

and

−c− 3a′ < −c ⇐⇒ −3a′ < 0 ⇐⇒ a′ > 0 X (by assumption)

and the �rst one is true because a′ = |a′|, (−c) = |c| and |a′| < 2/3|c| by
(**).
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4th case: a′ < 0, c < 0.

|c− 3a′| < |c| = −c
m

c− 3a′ < −c ⇐⇒ −3a′ < −2c ⇐⇒ −a′ < 2

3
(−c)

and

−c+ 3a′ < −c ⇐⇒ 3a′ < 0 ⇐⇒ a′ < 0 X (by assumption)

and the �rst one is true because −a′ = |a′|, (−c) = |c| and |a′| < 2/3|c| by
(**). In any case m′ = +1 or m′ = −1 will �t our needs. All in all we now
have constructed the matrix

M (1) = V T±3V −1 · Um ·M =

(
a′ ∗

c+m′a′ ∗

)
where |c1| = |c+m′a′| < |c|.

Note that the case a = 0 can never occur as M ∈ Γ1(3) so a ≡ 1 mod 3
but a = 0 implies a ≡ 0. Also note that the case c = 0 may occur but then
we are directly in the situation as if the chain had stagnated and 'start' the
proof below.

Restarting this process with M (1) yields M (2) and so forth. When the
chain stagnates we have found integers m1,m

′
1,m2,m

′
2, ... such that

V U3m′NV −1UmN · · ·V U3m′1V −1Um1M =

(
x y
0 z

)
= W, (2.7)

Where the c-entry in W is zero as otherwise we could apply the above once
more and �nd a cN+1 with |cN+1| < |cN | i.e. the chain had not stagnated
yet which is a contradiction. It is possible that N = 0. In that case c was 0
from the beginning.

As W ∈ SL2(Z), |x| = |y| = 1 and x, y share the same sign. Actually
they share + as x = −1 would imply that x ≡ 2 ��≡ 1 mod 3 which is
a contradiction because W ∈ Γ1(3) as all matrices in (2.7) are. So W =
( 1 r

0 1 ) = U r for some r ∈ Z but then we have shown that

M = U−3m1V U−m
′
1V −1 · · ·U−3mNV U−m

′
NV −1U r

is in the group generated by U and V U3V −1 as desired.
On (a): The proof is actually the same. One needs to see that (**) works

with the factor 1/2 too and �nally one ends up with W as above. One then
needs −Id because the case x = −1 can not be excluded.
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2.5.3 De�nition. We de�ne the Dedekind η function to be

η(z) = e
2πiz
24 ·

∏
n∈N

(1− e2πinz) = q1/24
∏
n∈N

(1− qn).

This function is not itself a modular form but due to the following two
facts it can be used to construct modular forms for subgroups:

2.5.4 Theorem. η is well-de�ned and converges uniformly on sets of the
form

Sδ = {z ∈ C | Im(z) ≥ δ > 0}

for any δ ∈ R+.

Proof. See [RS 07, Ko 93].

2.5.5 Theorem. η satis�es the following transformation rule:

η(−1

z
) =

√
z

i
η(z)

where
√
z = e1/2 Log(z) is the branch of the complex root having positive real

part.

Proof. See [Ko 93].

2.5.6 Conclusions. η is in particular locally uniformly convergent and as a
locally uniformly convergent limit of holomorphic functions it is holomorphic
(by the theorem of Weierstrass). Furthermore, η is holomorphic at i∞: With
the use of Cauchy sequences and the uniformly convergence on the sets Sδ,
one can show that the well known rule from analysis,

lim
z→z0

lim
n→∞

fn(z) = lim
n→∞

lim
z→z0

fn(z)

extends to the point z = i∞ Hence:

lim
z→i∞

∏
n∈N

(1− qn) =
∏
n∈N

(1− lim
z→i∞

qn)

= 1

With the help of Lemma 2.5.2 and the above transformation rule we can
show that

2.5.7 Theorem. (a) ϕ(z) := η(2z)16

η(z)8
is a modular form for Γ0(2) of weight

4. It vanishes at the cusp ∞ and does not vanish at the cusp 0.
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(b) ψ(z) := η(3z)9

η(z)3
is a modular form for Γ1(3) of weight 3. It vanishes at

the cusp ∞ and does not vanish at the cusp 0.

Proof. We need to show that these functions satisfy the three conditions.
Both satisfy (I) because η(z) 6= 0 for all z ∈ H and by the conclusions above,
η itself is holomorphic. Thus, in both cases the function is holomorphic as a
composition of such. By 2.5.1 we only need to verify (II) for the generators
which we have computed in Lemma 2.5.2. We will only do the following
computations for ϕ as the proof for ψ is actually completely the same with
di�erent numbers substituted and is therefore left to the reader.

On (a): Set ϕ(z) = η(2z)16

η(z)8
.

(II):

ϕ(Uz) = ϕ(z + 1)

=
η(2(z + 1))16

η(z + 1)8

=
(e2πi2/24)16 [e2πi2z/24

∏
n∈N (1−��

�
e2πine2πinz)]16

(e2πi1/24)8 [e2πiz/24
∏
n∈N (1−��

�
e2πine2πinz)]8

= e2πi(32−8)/24ϕ(z)

= ϕ(z)
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and for V U2V −1 we �rst analyze nominator and denominator:

η(2 · V U2V −1.z)16 = η

(
2z

−2z + 1

)16

= η

(
1

1
2z (−2z + 1)

)16

= η

(
1

−1 + 1
2z

)16

= η

(
1

1
2z − 1

)16

= η

(
− 1

1− 1
2z

)16

=

(√(
1− 1

2z

)(
1

i

))16

η

(
1− 1

2z

)16

(by (2.5.5))

=

(
1− 1

2z

)8

(−i)8︸ ︷︷ ︸
=1

η

(
1− 1

2z

)16
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for the denominator we obtain

η(V U2V −1.z)8 = η

(
z

−2z + 1

)8

= η

(
1

1
z (−2z + 1)

)8

= η

(
1

−2 + 1
z

)8

= η

(
1

1
z − 2

)8

= η

(
− 1

2− 1
z

)8

=

(√(
2− 1

z

)(
1

i

))8

η

(
2− 1

z

)8

(by (2.5.5))

=

(
2− 1

z

)4

(−i)4︸ ︷︷ ︸
=1

η

(
2− 1

z

)8
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All in all we obtain for ϕ:

ϕ(V U2V −1.z) =

(
1− 1

2z

)8
(e2πi/24)16

(
e

2πi(− 1
2z )

24
∏
n∈N (1−����e2πin(1)e2πin(− 1

2z ))

)16

(
2− 1

z

)4
(e2πi2/24)8

(
e

2πi(− 1
z )

24
∏
n∈N (1−����e2πin(2)e2πin(− 1

z ))

)8

= e
2πi
24

(16−2·8)

(
1− 1

2z

)8(
1− 1

z

)4 η
(
− 1

2z

)16

η
(
−1
z

)8
=

(
1− 1

2z

)8(
2− 1

z

)4
√

2z/i
16
η(2z)16√

z/i
8
η(z)8

(by (2.5.5))

=

(
2z − 2z

2z

)8
��
�(−i)8(

z − z
z

)4
��
�(−i)4

ϕ(z)

=
(2z − 1)8

(2z − 1)4ϕ(z)

= (−1)4(2z − 1)4ϕ(z)

= (−2z + 1)4ϕ(z)

= (V U2V −1 : z)4ϕ(z)

Under −Id, ϕ transforms correct as (−Id : z)4 = (−1)4 = 1 and −Id.z =
Id.z = z.

(III): Note that we only need to verify (III) at the cusps according
to 2.4.11. ϕ vanishes at the cusp ∞:

lim
z→i∞

ϕ(z) = lim
z→i∞

e2πiz ·
(∏

n∈N (1− limz→i∞ e
2πin2z)

)16(∏
n∈N (1− limz→i∞ e2πinz)

)8
= 0 ·

∏
1∏
1

= 0

where we were able to switch limit and product as in 2.5.6 explained.
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ϕ is holomorphic and does not vanish at the cusp 0:

ϕ(V.z) =
η (2 · V z)16

η (V z)8

=
η
(
− 1

z
2

)16

η
(
−1
z

)8
=

(√(
z
2

) (
1
i

))16

η
(
z
2

)16(√
z
(

1
i

))8

η (z)8
(by (2.5.5))

=
1

28

z�8
4

��z
4

(−i)8︸ ︷︷ ︸
=1

(−i)−4︸ ︷︷ ︸
=1

e
2πiz
24

(16/2−8)︸ ︷︷ ︸
=e0=1

∏
(1− qn/2)∏
(1− qn)

so for ϕV (z) we obtain

ϕV (z) =
1

(V : z)4
ϕ(V z)

=
�
��
1

z4�
�z4 1

28

→1︷ ︸︸ ︷∏
(1− qn/2)∏
(1− qn)︸ ︷︷ ︸
→1

z→i∞−→ 1

28
· 1

where again the convergence of the products follows from 2.5.6.

For eventually proving the main result in section 4 we need two more
modular forms.

2.5.8 De�nition. We de�ne the lattices

• A2 = {(x1, x2, x3) ∈ R3 | x1, x2, x3 ∈ Z, x1 + x2 + x3 = 0}
= 〈(1,−1, 0), (0, 1,−1)〉Z

• D4 = 〈(1,−1, 0, 0), (0, 1,−1, 0), (0, 0, 1,−1), (0, 0, 1, 1)〉Z
These are the root lattices of the respective Lie algebras. The Theta-series of
some lattice L is de�ned as the formal sum

ΘL(z) :=
∑
l∈L

eπi(l|l)
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where (·|·) is the usual euclidean scalar product on Rn.

One can show that this series converges locally uniformly and that the
following holds:

2.5.9 Theorem. Consider D4 and A2, the root lattices for the respective Lie
algebras. Then the Theta-series corresponding to these lattices are modular
forms:

(a) Θ2(z) := ΘD4(z) is a modular form for Γ0(2) of weight 2.

(b) Θ1(z) := ΘA2(z) is a modular form for Γ1(3) of weight 1.

Proof. We use [Eb 00], Thm. 3.2, p. 99. Theta series generally do neither
transform correct under all S ∈ SL2(Z) nor under all S ∈ Γ but in this case
we have for Θ2: det(D4) = 22 = 4, n = 4, ∆ = 22 and

(
∆
d

)
= ±1 but as

the Dirichlet symbol is multiplicative and ∆ is a square,
(

∆
d

)
= +1 so its

character is trivial. For Θ1 we have det(A2) = 3, n = 2,∆ = −3 and for any
matrix M =

(
a b
c d

)
∈ Γ1(3), we have d ≡ 1 mod 3 and since the Dirichlet

symbol is compatible with this,
(

∆
d

)
=
(−3

1

)
= 1 by de�nition of the symbol

in this case, so Θ1 transforms correctly for all matrices in Γ1(3).

3 The k/12− Formula

Modular forms are often given as in�nite products or sums so there is no
chance for �nding zeros in a direct computational approach. Unfortunately,
�nding zeros is exactly what we need to do in order to show that the mod-
ular forms which will generate M(Γ0(2)) � M(Γ1(3)) respectively � are al-
gebraically independent. Therefore one needs to extract the information
whether or whether not f(z0) = 0 di�erently. For z0 ∈ H, one possibility
is given by measuring ωf (z0). If N := ωf (z0) > 0 then the Fourier series
(which is actually a power series as f is holomorphic) begins with a term
having positive index, so f(z) =

∑∞
n=N an(z − z0)n = (z − z0)N · h(z), h

being holomorphic and therefore f(z0) = (z0−z0)N ·h(z0) = 0. It is however
very di�cult to measure wf (z0) for some speci�c z0 ∈ H directly. As we will
see: a better way is to sum up all information on all possible zeros (includ-
ing the possible zeros at the cusps), called the total order of f , and then
measure this term. This has two reasons: �rstly, this term is equal to a very
nice expression. Secondly, one has put a lot of e�ort on studying the Fourier
series of the functions fL (mostly the coe�cients of these expansions are the
objects of desire) so using Corollary 2.4.8, one has information about the
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behavior of fL at in�nity. Substituting the information of the behavior at
the cusps into the formula �rst mentioned will relate the zeros at the cusps
and actual zeros in H in a very nice way. Thus, the subject is now to show
this equality.

A consequence of the generalized de�nition of ωf (z) is that the order
does not depend on the concrete representative z but only on the orbit
Γ.z = JzK, i.e. ωf (JzK) := ωf (z) is well-de�ned. Before we prove this we
need a preparatory lemma:

3.0.1 Lemma. Let G be an area, z0 ∈ G �xed, f : G → C a meromorphic
function unequal to the zero function and h : G→ G a holomorphic bijective
function such that h′(z0) 6= 0 and h−1 is holomorphic again, then we have
wf (h(z0)) = wf◦h(z0), i.e. the behavior of f at h(z0) is the behavior of f ◦h
at z0.

Proof. From complex analysis we know that ωf (h(z0)) = N if and only if
there is a neighborhood U around z0 such that the function r : U → C
with r(z) = (z − h(z0))−Nf(z) is holomorphic on U with r(h(z0)) 6= 0.
Analogously, ωf◦h(z0) = M i�. s(v) = (v − z0)−Mf(h(v)) is holomorphic at
z0 with s(z0) 6= 0. We show N = M by showing that s with exponent N is
holomorphic at z0 with (v−z0)−Nf(h(z0)) 6= 0. Let a sequence (vn)n∈N with
vn

n→∞−→ z0 be given. Set zn := h(vn). Since h is in particular continuous, we
have zn

n→∞→ h(z0). Consider the quotient r(zn)/s(vn):

r(zn)

s(vn)
=

(zn − h(z0))−Nf(zn)

(vn − z0)−Nf(h(vn))

=
(h(vn)− h(z0))−N���

��f(h(vn))

(vn − z0)−N���
��f(h(vn))

(as zn = h(vn))

=

(
h(vn)− h(z0)

vn − z0

)−N
n→∞−→ (h′(z0))−N 6= 0 (3.1)

The cancellation makes sense as f(h(vn)) 6= 0 for all but �nitely many n ∈ N
because either f is holomorphic at h(z0) with f(h(z0)) 6= 0 (then N = M =
0) or h(z0) is a pole of f (then there must be a neighborhood U ′ such
that |f(z′)| > 1 ∀z′ ∈ U ′. In the case that h(z0) is a zero of f the zeros
cannot accumulate as f is holomorphic and not the zero function. Moreover,
h′(z0)−N is de�ned as h′(z0) 6= 0 by assumption. We have shown that
s is continuous in z0. By Riemann's theorem on removable singularities,
this already su�ces to show that s is holomorphic in z0. Its value at z0 is
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computed to be

s(z0) = lim
v→z0

s(v)
(3.1)
= r(h(z0))︸ ︷︷ ︸

6=0

h′(z0)N︸ ︷︷ ︸
6=0

6= 0

Hence N = M .

3.0.2 Theorem. Let Γ be a subgroup of SL2(Z), then

(i) ∀z1, z2 ∈ H, z1 ≈ z2 mod Γ⇒ wf (z1) = wf (z2)

(ii) ∀L1, L2 ∈ SL2(Z), L1 ∼ L2 mod Γ⇒ nL1 = nL2

(iii) ∀L1, L2 ∈ SL2(Z), L1 ∼ L2 mod Γ⇒ n̂L1 = n̂L2

(iv) The �rst rule also holds for cusps, i.e. L.∞ ≈ L′.∞ mod Γ then
ωf (L.∞) = ωf (L′.∞).

In short: order and width of points and cusps do not depend on the concrete
representative but rather on the orbit. As a reformulation, we obtain the
cancellation rules ωf (T.z) = ωf (z), nTL = nL and n̂TL = n̂L for all z ∈
H, T ∈ Γ, L ∈ SL2(Z). Consequently, ζ = JL.∞K ∈ tr(∞), then ωf (ζ) :=
ωf (L.∞), nζ := nL and n̂ζ := n̂L are well-de�ned.

Proof. (i): Let z2 = T.z1 with T =
(
a b
c d

)
∈ Γ. Set the function h : H → H

to be h(z) = T.z. Then, h′(z) 6= 0 for all z ∈ H as

h′(z) =

(
az + b

cz + d

)′
=
a(cz + d)− (az + b)c

(cz + d)2

=
��acz + ad−��acz − bc

(cz + d)2

=

=1︷ ︸︸ ︷
det(T )

(cz + d)2
6= 0

because Im(z) > 0 and c, d are real. Hence we can apply the above lemma
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to f and h and obtain for every z0 ∈ H:

ωf (T.z0) = ωf (h(z0))

= ω(f◦h)(z0) (by Lemma 3.0.1)

= ω(cz+d)k·f (z0) (f satis�es (II))

= ω(cz+d)k(z0)︸ ︷︷ ︸
=0

+ωf (z0) (complex analysis)

= ωf (z0)

Remark that the usage of holomorphicity and the above lemma makes a
separate proof for the cusps necessary.

(ii): L1 ∼ L2 mod Γ⇒ (∃ T ∈ Γ) L2 = TL1. Let Ŝ be the generator of

ŜL2(Z)L1.∞. By Lemma 2.2.5,

ŜL2(Z)L2.∞ = ŜL2(Z)T.L1.∞ = Φ(T )ŜL2(Z)L1.∞Φ(T )−1 = 〈T̂ ŜT̂−1〉,

so the generator of the new stabilizer is Ŝ ′ = Φ(TST−1). To show nL1 = nL2

it su�ces to show that Ŝ ∈ Γ̂ ⇐⇒ Ŝ ′ ∈ Γ̂ since then the minimum is
captured over exactly the same subset of exponents. The i�. holds as T ∈ Γ
implies T̂ = Φ(T ) ∈ Γ̂ so

Ŝ ∈ Γ̂ ⇐⇒ T̂ Ŝ ∈ Γ̂ ⇐⇒ T̂ ŜT̂−1 = Ŝ ′ ∈ Γ̂

.
(iii): As n̂L = nL/c (for c ∈ {1, 2} and c = 2 ⇐⇒ −Id /∈ Γ) for all

L ∈ SL2(Z) by 2.3.8,

n̂L1 = nL1/c
(ii)
= nL2/c = n̂L2

(iv): Let L.∞ ≈ L′.∞ both be in ζ, then there is a G ∈ Γ such that
G.L.∞ = L′.∞. We have to show that ωf (L.∞) = ωf (L′.∞). As ωf does
not depend on the way (see 2.4.10), we know that ωf (L′.∞) = ωf (G.L.∞)
and we only have to show

ωf (G.L.∞) = ωf (L.∞)

For every modular form f of weight k we obtain

fGL(z) =
1

(G : Lz)k(L : z)k
(G : Lz)k · f(L.z) (G ∈ Γ, (II) and 2.4.2)

= fL(z)

As nL = nGL, the Fourier series of both function are completely the same
and in particular their �rst occurring exponent is the same.
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3.1 The k/12− Formula for modular forms for SL2(Z)

3.1.1 Theorem. Let f be a modular form for SL2(Z) of weight k unequal
to the zero form, then the following identity holds:

ωf (∞) +
1

2
ωf (i) +

1

3
ωf (%) +

∑
ζ∈H∩FI

ζ�≈ i,% mod SL2(Z)

ωf (ζ) =
k

12

Proof. See [Ra 77], p. 98, Theorem 4.1.4.

Remark that the sum
∑

ζ�≈ i,% ωf (ζ) is �nite: Assume there were in�nitely
many zeros of f in FI (say z1, z2, ... sorted in the sense that Im(z1) ≤
Im(z2) ≤ ...). Using α on all of them, we obtain a sequence tn = α(zn)
(α behaves injective because Re(zn) ∈ [−1/2, 1/2)). Hence, in the compact
set B1(0), there must be an accumulation point. Since the zn are ordered in
their imaginary part, |t1| ≥ |t2| ≥ ... so the accumulation point t has to lie
in B|t1|(0) ⊂ B1(0). Consider the associated function from condition (III),
GId =

∑∞
n=0 ant

n for the cusp Id.∞. As G(α(z)) = f(z), for a subsequence
of t1, t2, ... converging against t, we obtain an accumulation point of zeros of
G as

G(tn) = G(α(zn)) = f(zn) = 0.

Since GId is holomorphic, GId is identically and since Laurent series are
unique, an = 0 for all n ∈ N. Thus,

f = fId =
∑

ane
2πinz =

∑
0e2πinz = 0

is the zero form in contradiction to the assumption.
The term on the left in Theorem 3.1.1 is also called the "total order" of f ,
for short: tot(f).

3.2 The k/12 − Formula for modular forms for general sub-

groups

We now want to derive a formula for subgroups of �nite index similar to the
k/12−Formula. The tactic to do so is the following: Given a modular form
f for some Γ of weight k, we can construct a modular form g for SL2(Z)
having a weight k[SL2(Z) : Γ]. We then know a relation for the total order
of g, namely tot(g) = k[SL2(Z) : Γ]/12. The main question then is: how
to de�ne the "total order" for a modular form for a subgroup of SL2(Z)?
How does the relation of the order of g and the order of f look like? These
questions will be answered after the construction of g.
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3.2.1 Theorem. Let Γ be a subgroup of �nite index in SL2(Z), f be a
modular form of integer weight k ∈ Z for Γ and R a RRS for SL2(Z)/Γ. Set

g(z) :=
∏
L∈R

fL(z)

then g is a modular form for SL2(Z) of weight k[SL2(Z) : Γ].

Before we prove this theorem we need a lemma:

3.2.2 Lemma. Let R = {L1, ..., Ln} be a RRS for SL2(Z)/Γ and X ∈
SL2(Z) �xed. For every L ∈ R, there are unique matrices SL, RL such that
SL ∈ Γ, RL ∈ R and LX = SLRL. Furthermore the mapping L 7→ RL is a
bijection on R.

Proof. Existence: Since R is a RRS for Γ, we have SL2(Z) = Γ · R i.e. in
particular for the matrix LX ∈ SL2(Z), there are S ∈ Γ, R ∈ R such that
LX = SR.

Uniqueness: Assume there are S′ ∈ Γ, R′ ∈ R with LX = S′R′. Then
S′R′ = LX = SR implies S−1S′R′ = R and since S, S′ ∈ Γ, so is S−1S′,
so R ∼ R′ modulo Γ. Since both of them come from a RRS, this implies
R = R′. With this, SR = S′R′ = S′R follows. Canceling out R from both
sides yields S = S′.

Bijectivity: Since R is �nite, is su�ces to show injectivity. Assume
therefore that there are L,L′ both in R, both mapping to R, so there are
S, S′ ∈ Γ with

LX = SR, L′X = S′R⇒ R = S−1LX, R = (S′)−1L′X

⇒ S−1L = RX−1 = (S′)−1L′

⇒ S′S−1L = L′

⇒ L ∼ L′ mod Γ

⇒ L = L′

since both, L and L′ come from an RRS. If we set SL to be the unique S
and RL to be the unique R as constructed above, we are done.

Proof of Theorem 3.2.1. We have to show the three conditions. (I) is clear as
every fL is holomorphic as a composition of such, hence g is a �nite product
of holomorphic functions on H, hence holomorphic.
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(II): Let X ∈ SL2(Z) arbitrary and �xed. For every L ∈ R, we obtain
SL, RL as in the lemma above. With this we have:

g(Xz) =
∏
L∈R

fL(Xz)

=
∏
L∈R

1

µ(L : Xz)
f(LTz)

=
∏
L∈R

1

µ(L : Xz)

∏
L∈R

f(SLRLz)

=
∏
L∈R

1

µ(L : Xz)

∏
L∈R

µ(SL, RLz)
µ(RL, z)

µ(RL, z)
f(RLz)

(as f satis�es (II) and SL ∈ Γ)

=
∏
L∈R

1

µ(L : Xz)

∏
L∈R

µ(SL, RLz)µ(RL, z)fRL(z)

=
∏
L∈R

1

µ(L : Xz)

∏
L∈R

µ(SL, RLz)µ(RL, z)
∏
L∈R

fRL(z)︸ ︷︷ ︸
=
∏
fL as L→ RL is a bijection on R

=
∏
L∈R

µ(SL, RLz)µ(RL, z)

µ(L : Xz)
fL(z)

Proposition 2.4.2 states that (XY : z) = (X : Y z)(Y : z) for all X,Y ∈
SL2(Z). If we take this equation to the k-th power, we obtain the identity
for µ in place of (:), i.e. we have µ(XY, z) = [(XY : z)]k = [(X : Y z)(Y :
z)]k = (X : Y z)k(Y : z)k = µ(X,Y z)µ(Y, z) (note that this step is invalid
if k ∈ R because of the falsity of the exponentiation rule over C). Therefore
the fractional term is

µ(SL, RLz)µ(RL, z)

µ(L : Xz)
=
µ(SLRL, z)

µ(L,Xz)

=
µ(LX, z)

µ(L,XZ)

= �
���

�
µ(L,Xz)µ(X, z)

���
��µ(L,Xz)

= µ(X, z)

Hence

g(Tz) =
∏
L∈R

µ(SL, RLz)µ(RL, z)

µ(L : Xz)
fL(z) =

∏
L∈R

µ(X, z)fL(z) = µ(X, z)|R|g(z)
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The weight is correct because µ(X, z)|R| = ((X : z)k)[SL2(Z):Γ] = (X :
z)k[SL2(Z):Γ].

(III): This condition is actually the easiest one in this case. Since all fL
are holomorphic at in�nity, fL(i∞) exists for all L ∈ R by Theorem 2.4.7, so
limz→i∞ fL(z) = cL exists. Then, since R is �nite, we have limz→i∞ g(z) =
limz→i∞

∏
fL(z) =

∏
cL ∈ C, i.e. because Theorem 2.4.7 works in both

directions, g = gId is holomorphic at in�nity. This is all we have to do,
because in SL2(Z), there is only one cusp namely∞ = Id.∞ and by Theorem
2.4.11 we only have to check (III) at the cusps.

Although we have proven that g is a modular form, we still need to know
its order at in�nity because this is what we are interested in.

3.2.3 Theorem. For the setting as in the last theorem, g as constructed, we
have

ωg(∞) =
N1

n1
+ ...+

Nu

nu

Proof. Let [SL2(Z) : Γ] = u, i.e. R = L1, ..., Lu and ωfL(∞) = NL, i.e. the
Laurent series of the function GL begins with the term carrying the index
NL. Then, since f is a modular form, all fL have Fourier expansions of the
form

∑∞
n=NL

an(L)e2πinz/nL . For convenience, we set nj = nLj , Nj = NLj ,
A := lcm(n1, ..., nu), Aj = A/nj for j ∈ {1, ..., u}, r := N1/n1+...+Nu/nu =
(N1A1 + ...+NuAu)/A and R := 2πir.

g(z) =
∏
L∈R

fL(z)

= fL1(z) · ... · fLu(z)

=

 ∞∑
n=N1

an(L1)e2πinz/n1

 · ... ·( ∞∑
n=Nu

an(Lu)e2πinz/nu

)

= e
2πi

N1
n1
z
...e2πiNu

nu
z

( ∞∑
n=0

ãn(L1)e2πinz/n1

)
· ... ·

( ∞∑
n=0

ãn(Lu)e2πinz/nu

)
(where ãn(Lj) = an+Nj (Lj))

= e2πirz
∞∑
l=0

∑
(l1,...,lu)∈Nu,
l1+...+lm=l

ãl1(L1)...ãlu(Lu)e2πiz(l1A1+...+luAu)/A

= eRz
∞∑
l=0

cle
2πilz/A (see below)
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Where the cl are sums over terms of the form ãl1(L1) · ... · ãlu(Lu) with
l1 + ... + lu = l. In particular c0 = ã0(L1) · ... · ã0(Lu) since 0 + ... + 0 is
the only way to sum up to 0 when only natural summands are allowed. In
particular

c0 6= 0 (3.2)

as each ã0(Lj) = aNj (Lj) 6= 0 as it is the �rst term in the Laurent/Fourier
series that occurs. The validity of the last step in the calculation above is
justi�ed by "collecting the terms" (this can indeed be made more precise).

We now consider a function G : B1(0)→ C with

G(t) :=

∞∑
l=0

clt
l

In order to analyze this function further, we de�ne the function q(z) to be
q(z) = e2πiz/A. First, we claim that G converges. We observe that the
series

∑∞
l=0 cle

2πilz/A =
∑∞

l=0 clq(z)
l converges absolutely for all z ∈ H. We

can do the steps from the calculation above backwards and thus decompose
this sum into a �nite product of absolutely converging sums (this is the
justi�cation for the Cauchy-product-step). Leaving out the eRz-term does
not change the behavior of convergence. For every t ∈ B1(0), we �nd a z ∈ H
such that q(z) = t, hence |G(t)| ≤

∑∞
l=0 |cl||tl| =

∑∞
l=0 |cl||q(z)l| < ∞. By

construction we have

e−Rzg(z) =
∞∑
l=0

cle
2πilz/A = G(q(z)) ∀z ∈ H (3.3)

As g satis�es condition (II), g(z + 1) = g(U.z) = (0z + 1)kg(z) = g(z).
Substituting this into (3.3) gives

e−RG(q(z)) = e−Re−Rzg(z) = e−R(z+1)g(z+1) = G(q(z+1)) = G(e
2πi
A q(z))

Since we �nd a preimage for every t ∈ B1(0) under q and the rest of the
factors in the last identity do not depend on t or z at all, we obtain for every
t ∈ B1(0) the identity

G(t) = eRG(te
2πi
A )

If we write G back as its power series we see that

∞∑
l=0

clt
l = G(t) = eRG(te

2πi
A ) = eR

∞∑
l=0

clt
le

2πil
A
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Since power series are unique, for all l ∈ N the identity eRcle
2πil
A = cl holds.

Rewriting this yields

[1− (eR+ 2πil
A )]cl = 0 (3.4)

By (3.2), c0 6= 0 so we substitute l = 0 and cancel c0 in the above in order
to deduce

1 = eR+ 2πi0
A = eR

i.e. 2πir ∈ 2πiZ and consequently r ∈ Z. More generally speaking, if

cl 6= 0 then we can cancel out cl in (3.4) and see that eR+ 2πil
A = 1 hence

2πi(r+ l/A) ∈ 2πiZ. Since r is an integer, l/A ∈ Z, so actually, G is a power
series in q(z)A, i.e. we now know the Fourier expansion of g = gId. It is:

g(z) = erz G(q(z))︸ ︷︷ ︸
series in q(z)A

= erz
∞∑
l=0

ĉle
2πilz,

in particular
ωg(∞) = r = N1/n1 + ...+Nu/nu

.

We now have a �rst insight on how g distributes the information of 'order'
of along the trace of ∞. In order to see completely through all the structure
and also how the information is distributed along the trace of a point z ∈ H,
we need the following:

3.2.4 Lemma. Given a group G and a subgroup H of �nite index and a
speci�c element s ∈ G, there are natural numbers m,σ1, ..., σm, elements
l1, ..., ln ∈ G and sets L1, ...,Lm such that

(i) σj = min{n ∈ N | sn ∈ l−1
j Glj}

(ii) Lj = {ljs0, ljs
1, ..., ljs

σj−1}

(iii)
⋃m
j=1 Lj is a RRS for G/H

Proof. See [Ra 77], p. 5, Theorem 1.1.2.

Notation: E2(Γ)C (E3(Γ)C respectively) stands for the complement of
E2(Γ), (E3(Γ) respectively) in the all-or-nothing-principle meaning, i.e.

E2(Γ)C = {JzK ⊂ H | z = L.i for some L ∈ SL2(Z) and Φ(LV L−1) /∈ Γ̂}
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and analogously

E3(Γ)C = {JzK ⊂ H | z = L.% for some L ∈ SL2(Z) and Φ(LPL−1) /∈ Γ̂}.

The following is the main part of the proof of the k/12 − Formula for
subgroups:

3.2.5 Theorem. Let Γ be a subgroup of SL2(Z) with a �nite index, f a mod-
ular form for Γ unequal to the zero form having g as an associated modular
form for SL2(Z) as in Theorem 3.2.1, then we have

1

c
ωg(∞) =

∑
ζ∈cu(Γ)

n̂ζ
nζ
ωf (ζ)

1

2c
ωg(i) =

1

2

 ∑
ζ∈tr(i)∩E2(Γ)

ωf (ζ)

+
∑

ζ∈tr(i)∩E2(Γ)C

ωf (ζ)

1

3c
ωg(%) =

1

3

 ∑
ζ∈tr(%)∩E3(Γ)

ωf (ζ)

+
∑

ζ∈tr(%)∩E3(Γ)C

ωf (ζ)

and for z ∈ FI with z ��≈ i, % we have

1

c
ωg(z) =

∑
ζ∈tr(z)

ωf (ζ)

where c = 2 if −Id ∈ Γ and c = 1 otherwise.

Proof. We know that the stabilizer ŜL2(Z)z is cyclic (thm 2.2.10). We choose

S to be its generator and apply the above lemma with G = ŜL2(Z), H =
Γ̂, s = S in order to obtain an RRS

R = {L1, L1S, ..., L1S
σ1−1︸ ︷︷ ︸

=L1

, L2, L2S, ..., L2S
σ2−1︸ ︷︷ ︸

=L2

, ..., LmS
σm−1}.

Note that this is an RRS of ŜL2(Z)/Γ̂ and not of SL2(Z)/Γ! We compute
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the trace of z to be

tr(z) = SL2(Z).z/≈

= ŜL2(Z).z/≈

= Γ̂.R.z/≈

= {Γ̂.L1.z, Γ̂.L1. Sz︸︷︷︸
=z

, ..., Γ̂.L1. S
σ1−1.z︸ ︷︷ ︸

=z

, ...}/≈

= {Γ̂.L1.z, Γ̂.L2.z, ..., Γ̂.Lm.z}/≈

= {
r

Γ̂.L1.z
z
, ...,

r
Γ̂.Lm.z

z
}

= {JL1.zK , ..., JLm.zK}

And the points Li.z and Lj .z are incongruent modulo Γ for i 6= j, because

Li.z ≈ Lj .z mod Γ⇒ ∃ T ∈ Γ s.t. Liz = TLjz

⇒ L−1
i TLjz = z

⇒ L−1
i TLj ∈ ŜL2(Z)z

for T = Φ(T )

⇒ L−1
i TLj ∈ ŜL2(Z)z = 〈S〉

⇒ L−1
i TLj = Sn

for some n = dσi + r ∈ N with d, r ∈ N, 0 ≤ r < σi

⇒ TLj = LiS
dσjSr = LiS

dσjL−1
i︸ ︷︷ ︸

=(LiS
σjL−1

i )d∈Γ̂ by 3.2.4 (i)

LiS
r

⇒ LiS
r = (LiS

σjL−1
i )−dTLj ∈ Γ̂ · Lj

⇒ (since r < σi) Lj ∼ L for some L ∈ Li

This is a contradiction as the union of the Li forms an RRS so in particular,
all the matrices from the sets Li,Lj for i 6= j are incongruent modulo Γ̂.

We have derived the equation∑
ζ∈tr(z)

ωf (ζ) =
∑

ζ∈{JL1.zK,...,JLm.zK}

ωf (ζ) =
m∑
j=1

ωf (Lj .z) (3.5)

and if we de�ne nj := nLj , n̂j := n̂Lj then we have moreover derived that

∑
ζ∈tr(∞)

n̂ζ
nζ
ωf (ζ) =

∑
ζ∈{JL1.zK,...,JLm.zK}

n̂j
nj
ωf (ζ) =

m∑
j=1

n̂j
nj
ωf (Lj .z) (3.6)
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We now make a case distinction on whether z = ∞, z = i, z = %, z ∈
H \ {∞, i, %}. In each case we must clarify the role of σi �rst:

1st case: z =∞ The generator of ŜL2(Z)∞ is S = Φ(U) = Û in this case.

Setting Sj = Lj(Û
n)L−1

j to be the generator of ŜL2(Z)Lj .∞ and noting that

Ûn ∈ L−1
j Γ̂Lj ⇐⇒ Lj(Û

n)L−1
j ∈ Γ̂ leads to

σj = min{n ∈ N | Ûn ∈ L−1
j Γ̂Lj}

= min{n ∈ N | Lj(Ûn)L−1
j ∈ Γ̂}

= min{n ∈ N | Snj ∈ Γ̂}
= n̂Lj = n̂j (3.7)

Also note that
nLj = nLjS = ... = n

LjS
σj−1 , (3.8)

because Lj .∞ = Lj .S.∞ = ... = Lj .S
σj−1.∞ � solely because S.∞ = ∞ �

and nx does only depend on the point x. All in all we obtain:∑
ζ∈tr(∞)

n̂ζ
nζ
ωf (ζ) =

m∑
j=1

n̂j
nj
ωf (Lj .z) (from (3.6))

=

m∑
j=1

n̂j
nj
ωf (Lj .z)

=

m∑
j=1

σj−1∑
d=0

1

nj
ωf (Lj . z︸︷︷︸

=Sd.z

) (n̂j = σj by (3.7))

=
m∑
j=1

σj−1∑
d=0

1

nLjSd
ωf (Lj .S

d.z)

(as nj = nLj = nLjSd for all d by (3.8))

=
∑
L∈R

ωf (Lz)

nL

=
∑
L∈R

NL

nL
(3.9)

The last line in (3.9) does not depend on the concrete RRS: given R and
R̃, the mapping L ∈ R 7→ [the L̃ in R̃ with L = T L̃ for some T ∈ Γ] is a
bijection and NL, nL do only depend on the orbit in the sense that n

T L̃
=

n
L̃
, N

T L̃
= N

L̃
, see 3.0.2.
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Consider the �xed RRS R′ = {L′1, ..., L′u} used to construct g from f in
Theorem 3.2.1. We can consider the homogenized version

R̂ = Φ(R′) = {Φ(L′1), ...,Φ(L′u)}

Note that this is not necessarily a RRS for ŜL2(Z)/Γ̂. Depending on whether
or not −Id ∈ Γ, there are two possibilities: If −Id ∈ Γ, then R̂ actually is
an RRS by 2.1.8(c). We also have |Φ(R′)| = |R′| and

Φ(L′1).∞ = L′1.∞, ...,Φ(L′u).∞ = L′u.∞

and therefore

nΦ(L′j)
= nΦ(L′j).∞ = nL′j .∞, NΦ(L′j)

= NΦ(L′j).∞ = NL′j .∞,

see 2.3.5 and 2.4.10. Therefore, in the last sum of (3.9), we can switch
from R to Φ(R′) (as both are RRS for the homogeneous versions) and then
from Φ(R′) to R′ (as they coincide in terms of amount of members and
movements) and obtain

∑
ζ∈tr(∞)

n̂ζ
nζ
ωf (ζ) =

∑
L∈R

NL

nL
=
∑
L′∈R′

NL′

nL′
=
NL′1

nL′1
+ ...+

NL′u

nL′u
= ωg(∞)

As ωg(∞) =
NL′1
nL′1

+ ...+
NL′u
nL′u

by Theorem 3.2.3.

If −Id /∈ Γ, then things look di�erent: by Lemma 2.1.8, u is even and
precisely half of the L collide in the sense that we �nd Gu

2
+1, ..., Gu all in Γ

such that
L′u

2
+1 = G1(−L′1), ..., L′u = Gu

2
(−L′u

2
)

and R̂ := {Φ(L1), ...,Φ(Lu
2
)} forms an RRS for ŜL2(Z)/Γ̂. When switching

from R to R̂ we see that half of the summands disappear. However, since

nL(u2 +j)
= nG(u2 +j)(−L′j)

3.0.2
= n−L′j

2.3.5
= n−L′j .z

2.3.5
= nΦ(L′j)

(3.10)

and

NL′
(u2 +j)

= NG(u2 +j)(−L′j)
3.0.2
= N−L′j

2.4.10
= N−L′j .z

2.4.10
= NΦ(L′j)

(3.11)

for all j = 1, ..., u/2, we can put them into the sum again:
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∑
ζ∈tr(∞)

n̂ζ
nζ
ωf (ζ) =

∑
L∈R

NL

nL
=
∑
L∈R̂

NL

nL

=
1

2
· 2 ·

NΦ(L′1)

nΦ(L′1)
+ ...+

NΦ(L′u
2

)

nΦ(L′u
2

)


=

1

2
·

NΦ(L′1)

nΦ(L′1)
+ ...+

NΦ(L′u
2

)

nΦ(L′u
2

)
+
NΦ(L′1)

nΦ(L′1)
+ ...+

NΦ(L′u
2

)

nΦ(L′u
2

)


=

1

2
·

NL′1

nL′1
+ ...+

NL′u
2

nL′u
2

+
NL′

(u2 +1)

nL′
(u2 +1)

+ ...+
NL′u

nL′u


(by (3.10), (3.11))

=
1

2
ωg(∞)

2nd case: z = i Here, S = ±V and σj takes the role of the "opposite" of

the size of the stabilizer Γ̂Lj .i meaning that

σj = 1 ⇐⇒ Φ(LjV L
−1
j ) ∈ Γ̂ ⇐⇒ JLj .zK ∈ E2(Γ) ⇐⇒ |Γ̂Lj .i| = 2

and

σj = 2 ⇐⇒ Φ(LjV L
−1
j ) /∈ Γ̂ ⇐⇒ JLj .zK /∈ E2(Γ) ⇐⇒ |Γ̂Lj .i| = 1

because of the all-or-nothing-principle of the stabilizers (see section 2.2).
Moreover, no other value can be taken by σj apart from 1, 2 as Φ(LjV L

−1
j )

is of order two as V is. After we resorted the σj , we can assume that
σ1 = ... = σr = 1 and σr+1 = ... = σm = 2 (i.e. i�. L1.i, ..., Lr.i are all
contained in E2(Γ) and Lr+1.i, ..., Lm.i are not), then

R = {L1, ..., Lr, Lr+1, Lr+1V, ..., Lm, LmV }. (3.12)

Again, let R′ be the RRS that was used to construct g from f and let
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−Id ∈ Γ. Computing the order of g at z = i we see that

1

2
ωg(i) =

1

2
ω(

∏
L∈R′ fL)(i)

=
1

2

∑
L∈R′

ωfL(i)

=
1

2

∑
L∈R′

ω1/(L:z)k(i)︸ ︷︷ ︸
=0

+ω(f◦L.)(i)

=
1

2

∑
L∈R′

ωf (L.i)

(see Lemma 3.0.1 and cp. Lemma 3.0.2(i))

=
1

2

∑
L∈R

ωf (L.i)

(term is independent of RRS, cp. case z =∞)

=
1

2

[
ωf (L1.i) + ...+ ωf (Lr.i)+

ωf (Lr+1.i) + ωf (Lr+1 V.i︸︷︷︸
=i

) + ...+ ωf (Lm.i) + ωf (Lm V.i︸︷︷︸
=i

)
]

=
1

2

∑
j∈{1,...,m},
Lj .i∈E2(Γ)

ωf (Lj .i) +
�
��
1

2
· �2 ·

∑
j∈{1,...,m},
Lj .i/∈E2(Γ)

ωf (Lj .i)

=
1

2

∑
ζ∈tr(i),
ζ∈E2(Γ)

ωf (ζ) +
∑

ζ∈tr(i),
ζ /∈E2(Γ)

ωf (ζ)

(3.13)

If −Id /∈ Γ, analogously to the case z =∞, we obtain

1

2c
ωg(i) =

1

2

1

2

∑
L∈R′

ωf (L.i)

=
1

2

∑
L∈R

ωf (L.i)

=
1

2

∑
ζ∈tr(i),
ζ∈E2(Γ)

ωf (ζ) +
∑

ζ∈tr(i),
ζ /∈E2(Γ)

ωf (ζ)
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3rd case: z = % Completely analogous to the case z = i with the factors
1/3 instead of 1/2.

4th case: z ��≈ i, %: Here, S = Φ(ID) as ŜL2(Z)z = {Φ(Id)} (see thm.
2.2.10) so σj = 1 for all j and thus, as in (3.13)

ωg(z) =
∑
L∈R′

ωf (L.z)

=
1

c

∑
L∈R

ωf (L.z)

=
1

c

∑
ζ∈tr(z)

ωf (ζ)

Where c = 2 if −Id /∈ Γ and 1 otherwise.

For convenience we de�ne the set

J := {ζ ∈ H/ ≈ | ∃z ∈ FI : ζ ∈ tr(z), ζ /∈ E2(Γ), ζ /∈ E3(Γ)}

We have therefore shown the k/12−Formula for modular forms of integer
weight for arbitrary subgroups of �nite index (compare with [Sko 92], note
that in the notation used there, ordL.∞(f) = ωf (L.∞)/nL):

3.2.6 Theorem (k/12− Formula). Let Γ be a subgroup having �nite index
in SL2(Z) and f be a modular form of integer weight k for Γ unequal to the
zero form, then the following identity holds:∑
ζ∈cu(Γ)

n̂ζ
nζ
ωf (ζ)+

1

2

∑
ζ∈E2(Γ)

ωf (ζ)+
1

3

∑
ζ∈E3(Γ)

ωf (ζ)+
∑
ζ∈J

ωf (ζ) =
k[ŜL2(Z) : Γ̂]

12

Proof. Construct g according to Theorem 3.2.1, then apply the usual k/12−
Formula for modular forms for SL2(Z) and then apply Theorem 3.2.5 to the
four terms in the total order of g to obtain complete description of the orders
of f :∑
ζ∈cu(Γ)

n̂ζ
nζ
ωf (ζ)+

1

2

∑
ζ∈E2(Γ)

ωf (ζ)+
1

3

∑
ζ∈E2(Γ)

ωf (ζ)+
∑
ζ∈J

ωf (ζ) =
k
c [SL2(Z) : Γ]

12

And this is the identity claimed as

1

c
[SL2(Z) : Γ] =

{
[SL2(Z) : Γ] = [ŜL2(Z) : Γ̂] if −Id ∈ Γ
1
2 [SL2(Z) : Γ] = ��

2
2 · [ŜL2(Z) : Γ̂] otherwise

by Lemma 2.1.8.
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Remark the right hand side depends on the index of the homogenized
versions of the groups and not the index itself. This is due to the fact that

we choose R to be an RRS of ŜL2(Z)/Γ̂ and not of SL2(Z)/Γ.

3.2.7 Remark. Whenever we speak of the k/12 − Formula, we mean the
version for modular forms of integer weight for arbitrary subgroups of �nite
index. The result can be proven to be correct even for weaker de�nitions of
the term "modular form" (see [Ra 77]). The term on the left is called the
total order of f , for short: tot(f).

3.3 A �rst consequence of the k/12− Formula

As mentioned in the introduction, we need three ingredients to show that
the modular forms of integer weight form a polynomial ring. Point ­ was
an upper bound of the dimension of the space of these forms. This is what
we will obtain from the k/12 − Formula now. We will heavily rely on the
assumption that all modular forms are holomorphic, i.e. ωf (z) ≥ 0 ∀z ∈ H.

3.3.1 De�nition. Let Γ be a subgroup of �nite index in SL2(Z). We de�ne
the vector space Mk(Γ) to be

Mk(Γ) := {f | f is a modular form for Γ of weight k}.

That Mk(Γ) actually is a vector space can be shown by some direct
computations. We can give an upper bound on the dimension of Mk(Γ):

3.3.2 Theorem (Dimension formula). Let Γ be a subgroup of �nite index
in SL2(Z), then for any k ∈ Z we have

dim(Mk(Γ)) ≤

0 if k < 0

1 +

⌊
k[ŜL2(Z):Γ̂]

12

⌋
if k ≥ 0

Proof. The �rst case is clear as the right hand side of the k/12 − Formula
is always nonnegative (but the right hand side � which equals the left hand
side � would be if there was any modular form with negative weight). Set

n := 1 +

⌊
k[ŜL2(Z) : Γ̂]

12

⌋
.

Let x1, ..., xn be points in H that are neither congruent to i nor to % modulo
Γ. Finding such points is easy: As FI is a proper fundamental domain,
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we have an uncountable stock of points that are incongruent to i and %
modulo SL2(Z) (we may simply select n points from FI unequal to i and
%). Since a congruency modulo a subgroup is in particular a congruency
modulo SL2(Z), they are also incongruent to i, % modulo any subgroup Γ.
The homomorphism of vector spaces

Ψ : Mk(Γ)→ Cn,Ψ(f) = (f(x1), ..., f(xn))

is injective. Indeed, if f(x1) = ... = f(xn) = 0 but f is not the zero form
then ωf (x1) ≥ 1, ..., ωf (xn) ≥ 1 and as they are all incongruent to i and %,
these terms are summed up in the last sum, so

tot(f) =
∑

ζ∈cu(Γ)

n̂ζ
nζ
ωf (ζ)

︸ ︷︷ ︸
≥0

+
1

2

∑
ζ∈E2(Γ)

ωf (ζ)

︸ ︷︷ ︸
≥0

+
1

3

∑
ζ∈E2(Γ)

ωf (ζ)

︸ ︷︷ ︸
≥0

+
∑
z∈J

ωf (ζ)

≥
∑
z∈J

ωf (ζ)

≥ ωf (x1)︸ ︷︷ ︸
≥1

+...+ ωf (xn)︸ ︷︷ ︸
≥1

≥ n

>
k[ŜL2(Z) : Γ̂]

12
= tot(f)

(by the k/12− Formula)

a contradiction.

3.3.3 De�nition. Let Γ be a subgroup of SL2(Z) having �nite index. A
modular form f for Γ is called a cusp form if it "vanishes at all cusps", i.e.
if for every cusp L.∞, ωf (L.∞) > 0. The vector space of all cusp forms of
weight k will be referred to as Sk(Γ).

3.3.4 Theorem (Dimension formula for cusp forms). Let Γ be a subgroup
of �nite index in SL2(Z), c = | cu(Γ)| its total amount of cusp orbits and r
be the amount of regular cusp orbits. Then for any k ∈ Z we have

dim(Sk(Γ)) ≤


0 if 0 ≤ k < r+c

2
12

[ŜL2(Z):Γ̂]

1 +

⌊
k[ŜL2(Z):Γ̂]

12 − r+c
2

⌋
else
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Proof. If k < 0 then there is no modular form at all and in particular no
cusp form apart from the zero form by the usual dimension formula. Let
k ∈ N and set

n :=


0 if 0 ≤ k < r+c

2
12

[ŜL2(Z):Γ̂]

1 +

⌊
k[ŜL2(Z):Γ̂]

12 − r+c
2

⌋
else

As in Theorem 3.3.2 we �nd points x1, ..., xn in H (in the �rst case we do
not need any point at all) that are neither congruent to i nor to % modulo
Γ. Again we consider the homomorphism of vector spaces

Ψ : Mk(Γ)→ Cn,Ψ(f) = (f(x1), ..., f(xn))

and show that it is injective: Assume f(x1) = ... = f(xn) = 0 but f not
being the zero form, then the k/12− Formula is applicable. Note that since
ζj is regular for j ≤ r, we have n̂ζj = nζj by de�nition of regularity in this
case whence for j > r, by 2.3.8, we have n̂ζj/nζj = 1/2. This leads to

tot(f) =
∑

ζ∈cu(Γ)

n̂ζ
nζ
ωf (ζ) +

1

2

∑
ζ∈E2(Γ)

ωf (ζ)

︸ ︷︷ ︸
≥0

+
1

3

∑
ζ∈E2(Γ)

ωf (ζ)

︸ ︷︷ ︸
≥0

+
∑
ζ∈J

ωf (ζ)

︸ ︷︷ ︸
≥0

≥
r∑
i=1

ωf (ζi) +

c∑
i=r+1

1

2
ωf (ζi) + n

≥ r +
c− (r + 1) + 1

2
+ n

=
r + c

2
+ n

>
k[ŜL2(Z) : Γ̂]

12
= tot(f)

a contradiction.

4 The polynomial structure of the rings of modular

forms

In this section we �nally want to show that the vector space

M∗(Γ) :=
∑
k∈Z

Mk(Γ)
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is equal to the set C[f0, g0] where f0, g0 are modular forms for the subgroup
Γ for Γ ∈ {Γ0(2),Γ1(3)}. In other words: the ring spanned by all modular
forms of integer weight of these subgroups forms a polynomial ring in two
�xed modular forms. Note that M∗(Γ) is not the set of all modular forms
of integer weight. This set is contained in M∗(Γ), but indeed, M∗(Γ) also
contains sums of modular forms of di�erent weights which are not again
modular forms because every summand transforms in its own weight.

A direct computation shows that M∗(Γ) can be enriched by the usual
multiplication: if f, g are modular forms of weight k, l then f · g transforms
like

(f · g)(Tz) = f(Tz)g(Tz) = (T : z)k(T : z)l(f · g)(z) = (T : z)k+l(f · g)(z)

and since we have characterized the holomorphicity at the cusps via limits
in Theorem 2.4.7, we see that f ·g is holomorphic at the cusps solely because
for every cusp L.∞,

lim
z→i∞

(f · g)L(z) = lim
z→i∞

1

(L : z)k+l
f(Lz) · g(Lz)

= lim
z→i∞

1

(L : z)k
f(Lz) · lim

z→i∞

1

(L : z)l
g(Lz)

= lim
z→i∞

fL(z) · lim
z→i∞

gL(z)

= fL(i∞)gL(i∞)

exists. We have therefore already shown that M∗(Γ) is not only a vector
space but also a ring with multiplication de�ned component wise, i.e.

(λ1f1 + ...+ λnfn) ∗ (µ1g1 + ...+ µmgm) :=
∑

i=1,...,n
j=1,...,m

λiµj (fi · gj)︸ ︷︷ ︸
∈M∗(Γ)

and since everything behaves as usual we will just write the symbol "·" in
place of "∗". From the point of vector spaces we now �rst decompose M∗
into smaller spaces:

4.0.1 Theorem. Assume that in Γ there is a matrix T =
(
a b
c d

)
such that

c 6= 0 then M∗(Γ) is a graded ring, i.e.

M∗(Γ) =
⊕
k∈N

Mk(Γ)
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Proof. Let f1, ..., fn be modular forms all unequal to the zero form coming
from pairwise di�erent spaces Mki(Γ), i.e. fi is a modular form of weight ki
and ki 6= kj for i 6= j. Formally we prove the claim by induction on n but we
will present it in a step by step way as this is more readable. After resorting
the fi we have k1 > k2 > ... > kn. Assume we have a nontrivial combination

n∑
i=1

λifi(z) = 0 ∀ z ∈ H (i)

As this is a functional equation that holds for all z ∈ H we also may substitute
Tz for z. Since all the fi satisfy condition (II), this yields the functional
equation

0 =
n∑
i=1

λifi(z) =
n∑
i=1

λifi(Tz) =
n∑
i=1

λi(cz + d)kifi(z) ∀ z ∈ H (ii)

from this we obtain

0 = (cz + d)k1(i)− (ii)

=((((
((((

(
λ1(cz + d)k1f1(z) +

n∑
i=2

λi(cz + d)k1fi(z)

−(((((
((((λ1(cz + d)k1f1(z)−

n∑
i=2

λi(cz + d)kifi(z)

=

n∑
i=2

λi[(cz + d)ki+(k1−ki) − (cz + d)ki ]fi(z)

=

n∑
i=2

λi(cz + d)ki [(cz + d)k1−ki − 1]fi(z) (iii)

Continuing by substituting Tz for z i.e. fi(Tz) = (cz + d)kifi(z) in (iii)
yields

0 =
n∑
i=2

λi(cz + d)2ki [(cz + d)k1−ki − 1]fi(z) (iv)

Computing 0 = 0− 0 = (cz + d)k2 · (iii)− (iv), we obtain analogously to the
computation of (iii):

0 =

n∑
i=3

λi
(
(cz + d)ki+k2 − (cz + d)2ki

)
[(cz + d)k1−ki − 1]fi(z) (v)
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Observe how the sum shrinks step by step. Continuing in this way we arrive
at the n-th summand with an equation of the form

0 = λnp(z)fn(z) (2n)

where p(z) is some polynomial in z having some power of c as exponent of
the leading term. Here we use that c 6= 0 so p is not constant hence it must
have a �nite number of roots in the �eld C, say z1, ..., zdeg(p). If we select
any z0 ∈ H unequal to those �nitely many roots of p and also unequal to the
zeros of fn (which is possible as the zeros do not accumulate), we obtain

0 = λn p(z0)︸ ︷︷ ︸
6=0

fn(z0)︸ ︷︷ ︸
6=0

(2n)

and �nally that λn = 0. We substitute this into equation nr. (2n− 2):

0 = λn−1p̃(z)fn−1(z) + λnp(z)fn(z) = λn−1p̃(z)fn−1(z) (2n-2)

and obtain in the same manner as above that λn−1 = 0. Continuing in
this way we have shown that all λi are equal to zero hence that the sum is
direct.

The sense of this step is to reduce the structural analysis of M∗(Γ) to
the analysis of the Mk(Γ) spaces. In order to examine these further, we will
create a certain number of linearly independent modular forms and then use
the dimension formula to show that we have indeed found a basis. In order
to create a lot of di�erent forms from two basic ones we will now derive a
su�cient condition. Before doing that we will need a small de�nition:

4.0.2 De�nition. Let Γ be a subgroup of SL2(Z), f a modular form for
Γ and z = L.∞ a cusp, then we say that f(z) = f(L.∞) = c for some
c ∈ C i�. limz→i∞ fL(z) = c. Note that this does NOT mean that also
limz→L.∞∈P f(z) = c we just use this as an abbreviation.

4.0.3 Theorem. Let Γ be a subgroup of SL2(Z) and f, g modular forms
of weights k1, k2 ∈ N \ {0} and let z1, z2 ∈ H such that f and g behave
"di�erently" at these two points, i.e.

f(z1) 6= 0, g(z1) = 0, f(z2) = 0, g(z2) 6= 0

Then these two modular forms are algebraically independent in the sense that
for every polynomial P (x, y) ∈ C[x, y], P (f, g) ≡ zero on H implies P = 0
where "0" means the zero polynomial.
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Proof. We will �rst show that the assertion is correct for any polynomial of
the form

sk(x, y) =
∑

k1i+k2j=k

aijx
iyj .

Note that sk is not a homogeneous polynomial as the degree may be di�erent
for di�erent summands. The summands only satisfy some linear relation!
De�ne

S := {P | P is of the form sk for some k ∈ N and

P (f, g) ≡ zero on H and P 6= 0}
(4.1)

and assume on the contrary that the assertion was false, i.e. there was a
polynomial P ∈ S having a structure like sk for some k = k(P ) ∈ N then
we can also require P to have a minimal k. We will show that there is a Q
having a structure of sl for l < k and still Q ∈ S. Write P in the form

P (x, y) =
∑
i,j
j=0

aijx
iyj +

∑
i,j

i 6=0,j 6=0

aijx
iyj +

∑
i,j
i=0

aijx
iyj

= a · xc + xy
∑
i,j

i 6=0,j 6=0

aijx
i−1yj−1

︸ ︷︷ ︸
:=Q(x,y)

+b · yd (4.2)

where c = k/k1, d = k/k2, a 6= 0 only if k1 | k and b 6= 0 only if k2 | k. Note
that k(Q) = k(P ) − k1 − k2 < k(P ) as k1 6= 0 and k2 6= 0. We will show
that a = b = 0 anyway: into (4.2), we substitute x = f, y = g and obtain a
function in z. If we further substitute z = z1, we have

0 = P (f, g)(z1) = a · f(z1)c + f(z1) g(z1)︸ ︷︷ ︸
=0

Q(f, g) + b · g(z1)d︸ ︷︷ ︸
=0

= a · f(z1)c︸ ︷︷ ︸
6=0

so a = 0. Analogously, substituting z = z2 gives b = 0. Using continuity
arguments and the fact that zeros of holomorphic functions unequal to the
zero function do not accumulate, we 'cancel out' f and g and see that Q(f, g)
already is the zero function. Thus we arrive at the contradiction. This only
works if z1 and z2 both are in H and not in Q. If for example z1 is a cusp
then we may not substitute z = z1 in the above equation. We then proceed
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as follows:

P (f, g)(z) = 0 ∀z ∈ H

⇒ 1

(L : z)k︸ ︷︷ ︸
6=0∀z∈H

P (f, g)(z) = 0 ∀z ∈ H

⇒ 0 = a

(
f(z)

(L : z)k1

)c
+

∑
i,j

i 6=0,j 6=0

aij

(
f(z)

(L : z)k1

)i( g(z)

(L : z)k2

)j

+ b

(
g(z)

(L : z)k2

)d
(∀z ∈ H)

⇒ 0 = a · fL(z)c + fL(z)gL(z)Q(fL, gL)(z) + b · gL(z)d

⇒ 0 = lim
z→i∞

a · fL(z)c + fL(z)gL(z)Q(fL, gL)(z) + b · gL(z)d

= a · fL(i∞)c + fL(i∞) gL(i∞)︸ ︷︷ ︸
=0

Q(fL, gL)(i∞) + b · gL(i∞)d︸ ︷︷ ︸
=0

= a · fL(i∞)c︸ ︷︷ ︸
6=0

Hence, a = 0 also follows in this case and analogously b = 0.
Note that

sk(f, g) ≡ zero⇒ sk = 0

is the assertion that we will actually need afterwards. The following general
case is just for completeness: Let

P (x, y) =
∑

i=1,...,n
j=1,...,m

aijx
iyj

be a polynomial such that P (f, g) ≡ zero i.e. P (f, g)(z) = 0 for all z ∈ H.
We �rst rewrite the polynomial as

P (x, y) =
∑

k1i+k2j=1

aijx
iyj

︸ ︷︷ ︸
s1(x,y)

+
∑

k1i+k2j=2

aijx
iyj

︸ ︷︷ ︸
s2(x,y)

+...

As the sum over the sets M1(Γ),M2(Γ), ... is direct and sk(f, g) ∈ Mk(Γ),
P (f, g) ≡ zero implies that for every summand,

sk(f, g) ≡ zero

must hold. Hence, by the �rst step, sk = 0 for all k and thus P = 0 + 0 +
...+ 0 = 0.
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4.1 Preparatory parameters

Recall from basic number theory Euler's totient function

φ : N 7→ N, φ(n) = |(Z/nZ)∗|

where the asterisk means "the set of units in Zn". One can show the following
result:

4.1.1 Theorem. Let N ∈ N and pe11 · ... · p
ek
k its decomposition into prime

factors then the indices of the inhomogeneous (!) variants can be computed
to be

[SL2(Z) : Γ0(N)] = N
k∏
j=1

(
1

pj
+ 1

)
[SL2(Z) : Γ1(N)] = φ(N) · [SL2(Z) : Γ0(N)]

In particular

[SL2(Z) : Γ0(2)] = 3, [SL2(Z) : Γ1(3)] = 8

and since −Id ∈ Γ0(2) but −Id /∈ Γ1(3), we have by Lemma 2.1.8

[ŜL2(Z) : Γ̂0(2)] = 3, [ŜL2(Z) : Γ̂1(3)] = 4

Furthermore one can show that

cu(Γ0(2)) = {J0K , J∞K} = cu(Γ1(3))

Proof. See [Ga 07], section 2.5 and for a sketchy proof for the amount of
cusps see [Sko 92].

4.2 The case Γ0(2)

The following ingredient is the last one needed for simplifying the k/12 −
Formula for Γ0(2):

4.2.1 Theorem. The subgroup Γ0(2) possesses only one �xed point orbit.
More precisely we have

E2(Γ0(2)) =

{s
W =

1

2
(1 + i)

{}
and E3(Γ0(2)) = {}
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Proof. Concerning E3(Γ0(2)). Assume that there is a point z ∈ H such that

z ∈ E3(Γ0(2)) i.e. z = L.% and Φ(LPL−1) ∈ Γ̂0(2) so that either +LPL−1

or −LPL−1 are in Γ0(2). We now show that both cases are impossible. For

if L =
(
l1 l2
l3 l4

)
then L−1 =

(
l4 −l2
−l3 l1

)
and therefore

±LPL−1 = ±
(
l1 l2
l3 l4

)(
0 −1
1 1

)(
l4 −l2
−l3 l1

)
= ±

(
∗ ∗

l23 + l21 + l1l3 ∗

)
≡
(
∗ ∗
0 ∗

)
mod 2 (as ±LPL−1 ∈ Γ0(2))

and the ±-sign is gone as "+ = −" in Z2. A direct case-by-case analysis
shows that

l23 + l21 + l1l3 ≡ l3 + l1 + l1l3 ≡ 0 mod 2

is only possible if l1 ≡ l3 ≡ 0 mod 2 so 2 | l1, 2 | l3 and thus 2 | det(L) = 1,
a contradiction.

Concerning E2(Γ0(2)). We �rst show that |E2(Γ0(2))| = 1. Let z =
L.i, z′ = L′.i both be representatives of orbits E2(Γ0(2)), then we have to
�nd a matrix T ∈ Γ0(2) such that T.z = z′. The candidate is clearly L′L−1

as
L′L−1.z = L′��

�
L−1L.i = L′.i = z′.

Since z, z′ ∈ E2(Γ0(2)), Φ(LV L−1),Φ(L′V (L′)−1) ∈ Γ̂0(2). Therefore

±LV L−1 = ±
(
l1 l2
l3 l4

)(
0 −1
1 0

)(
l4 −l2
−l3 l1

)
= ±

(
∗ ∗

l24 + l23 ∗

)
≡
(
∗ ∗
0 ∗

)
mod 2

so

l4 + l3 ≡ l24 + l23 ≡ 0 mod 2 =⇒ l4 ≡ l3 mod 2.
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and analogously l′4 ≡ l′3 mod 2. Hence,

L′L−1 =

(
l′1 l′2
l′3 l′4

)(
l4 −l2
−l3 l1

)

≡

 ∗ ∗
l′3︸︷︷︸
≡l′4

l4 − l′4 l3︸︷︷︸
≡l4

 ≡
(

∗ ∗
�
�l′4l4 −��l

′
4l4 ∗

)

and therefore L′L−1 ∈ Γ0(2). It remains to show that W really is a �xed
point. A direct calculation shows that

T =

(
−1 1
−2 1

)
=

(
0 −1
1 −1

)
(−V )

(
−1 1
−1 0

)
has W as a �xed point and lies in Γ0(2).

Before we simplify the k/12 − Formula and actually make use of it we
clarify that all cusps are regular. This is easily checked: ∞ is regular as
nId = n̂Id = 1 and 0 = V.∞ =

(
0 −1
1 0

)
.∞ is regular as V, (−V ) /∈ Γ0(2) but(−1 0

0 −1

)
= V 2 ≡ (−V 2) mod 2 are both contained in Γ0(2) so nV = n̂V = 2.

This assures that the sum over the orders at the cusps only contains integer
summands.

With this, [ŜL2(Z) : Γ̂0(2)] = 3 (see thm 4.1.1) and the proof that there
is only one �xed point (orbit) modulo Γ0(2) we simplify the k/12−Formula
for Γ0(2):

ωf (∞) + ωf (0) +
1

2
ωf (W ) +

∑
ζ∈J

ωf (ζ) =
k

4

There exists no modular form f of negative weight by the dimension formula.
One more useful consequence is that f cannot have odd weight neither for
if f had odd weight, the left hand side would have a non-integer-part of 1/2
while the right hand side would have 1/4, i.e. a direct computation shows
that for naturalsm,n, k we can never have the relationm+n/2 = (2k+1)/4.
We have therefore already shown that

M∗(Γ0(2)) =
⊕
k∈N
k even

Mk(Γ0(2))

.
Substituting the concrete existing modular forms ϕ and Θ2 from Theo-

rems 2.5.7, 2.5.9 into the simpli�ed k/12− Formula, we obtain:
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ωϕ(∞)︸ ︷︷ ︸
≥1

+ωϕ(0) +
1

2
ωϕ(W ) +

∑
ζ∈J

ωϕ(ζ) =
4

4
= 1

Since all terms are nonnegative, we can actually conclude that

ωϕ(∞) = 1, ωϕ(W ) = 0,

otherwise the left hand side would be strictly bigger than 1 which is impos-
sible.

Finally this gives us the �rst part of the puzzle we desire for:

ϕ(∞) = 0, ϕ(W ) 6= 0, (4.3)

where ϕ(∞) = limz→i∞ ϕ(z).
For Θ2 we obtain

ωΘ2(∞) + ωΘ2(0) +
1

2
ωΘ2(W ) +

∑
ζ∈J

ωΘ2(ζ) =
2

4
=

1

2

Since all terms are nonnegative, we can conclude that

ωΘ2(∞) = 0, ωΘ2(W ) = 1,

otherwise the left hand side would be strictly bigger than 1/2 which is im-
possible. Again, the k/12− Formula reveals the zeros of the modular form:

Θ2(∞) 6= 0, Θ2(W ) = 0. (4.4)

Using Theorem 4.0.3 on ϕ and Θ2 which behave di�erently at two points
according to (4.3), (4.4), (note that the term "di�erent behavior" in this
theorem also includes "di�erent behavior at the cusps") we now know that
ϕ,Θ2 are algebraically independent. With this, we can realize step ®, "we
can construct these x essentially di�erent modular forms" from the intro-
duction .'Essentially di�erent' here means linearly independent. Since odd
weights cannot occur, let k be a given even natural weight, then

Θ
(k/2)
2 ϕ0,Θ

(k/2)−2
2 ϕ1,Θ

(k/2)−4
2 ϕ2, ...,Θ

(k/2)−2r
2 ϕr, ...

are linearly independent modular forms of weight [(k/2) − 2r] · 2 + r · 4 =
k − 4r + 4r = k. We can do this as long as

k

2
− 2r ≥ 0 ⇐⇒ k

4
≥ r ⇐⇒

⌊
k

4

⌋
+ 1 ≥ r (since r ∈ N)
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So we �nd bk/4c + 1 linearly independent modular forms. Now step ­

from the introduction comes into play: the dimension formula implies that

dim(Mk(Γ0(2))) ≤
⌊
k[ŜL2(Z) : Γ̂0(2)]/4

⌋
+ 1 = bk/4c+ 1

Consequently, we have already found all modular forms of weight k and
therefore have shown

4.2.2 Theorem. Set r = bk/4c+ 1, then

Mk(Γ0(2)) = LinC(Θ
k/2
2 ,Θ

k/2−2
2 ϕ, ...,Θ

k/2−2r
2 ϕr) := Nk(Γ0(2))

and therefore

M∗(Γ0(2)) =
⊕
k∈N
k even

Mk(Γ0(2)) =
⊕
k∈N
k even

Nk(Γ0(2)) = C[Θ2, ϕ]

4.3 The case Γ1(3)

Analogously to the case of Γ = Γ0(2) we need some more knowledge about
the �xed points:

4.3.1 Theorem. The subgroup Γ1(3) possesses only one �xed point orbit.
More precisely we have

E2(Γ1(3)) = {}, and E3(Γ1(3)) =

{s
Q =

1

6
(3 +

√
3i)

{}
Proof. Concerning E2(Γ1(3)). Assume that there is a point z ∈ H such that

JzK ∈ E2(Γ1(3)) i.e. z = L.% and Φ(LV L−1) ∈ Γ̂1(3) so that either +LV L−1

or −LV L−1 are in Γ1(3). We now show that both cases are impossible. For

if L =
(
l1 l2
l3 l4

)
then L−1 =

(
l4 −l2
−l3 l1

)
and therefore

+LV L−1 = +

(
l1 l2
l3 l4

)(
0 −1
1 0

)(
l4 −l2
−l3 l1

)
= +

(
l2l4 + l1l3 ∗
l24 + l23 −l2l4 − l3l1

)
≡
(

1 ∗
0 1

)
mod 3 (as LV L−1 ∈ Γ1(3))

For x, y ∈ Z3 we have the following possibilities (all values modulo 3):
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Table 2: Computations in Z3

x y x2 y2 xy x2 + y2 x2 + y2 + xy

0 0 0 0 0 0 0
0 1 0 1 0 1 1
0 2 0 1 0 1 1
1 0 1 0 0 1 1
1 1 1 1 1 2 0
1 2 1 1 2 2 1
2 0 1 0 0 1 1
2 1 1 1 2 2 1
2 2 1 1 1 2 0

We see that

l24 + l23 ≡ 0 mod 3 =⇒ l3 ≡ l4 ≡ 0 mod 3

and therefore 3|det(L) = 1, a contradiction. In the case −LV L−1 ∈ Γ̂1(3)
nothing changes because

l24 + l23 ≡ 0 mod 3 ⇐⇒ (−1)(l24 + l23) ≡ 0 mod 3

Concerning E3(Γ1(3)). We �rst show that |E3(Γ1(3))| = 1. Let z = L.i, z′ =
L′.i both be representatives of orbits in E3(Γ1(3)), then we show again that
L′L−1 ∈ Γ1(3). Since JzK , Jz′K ∈ E3(Γ1(3)), Φ(LPL−1),Φ(L′P (L′)−1) ∈
Γ̂1(3). It cannot be the case that +LPL−1 ∈ Γ1(3) as

+ LPL−1 ≡
(

1 ∗
0 1

)
mod 3

=⇒ 1 = tr(P ) = tr(LPL−1) ≡ tr

(
1 ∗
0 1

)
≡ 2 mod 3

This means −LPL−1 ∈ Γ1(3) and analogously −L′P (L′)−1 ∈ Γ1(3), so

−LPL−1 = −
(
l1 l2
l3 l4

)(
0 −1
1 1

)(
l4 −l2
−l3 l1

)
=

(
−l1l3 + l2l3 − l2l4 ∗

(−1)(l24 + l23 + l3l4) l1l3 − l1l4 + l2l4

)
≡
(

1 ∗
0 1

)
mod 3

71



We have l3 ≡ l4 ≡ x mod 3 (compare the last column of Table 2). Substi-
tuting this into the diagonal entries we obtain

−l1x+��l2x−��l2x ≡ 1 mod 3, ��l1x−��l1x+ l2x ≡ 1 mod 3. (4.5)

The case x ≡ 0 cannot occur as otherwise 3 | l3, l4 ⇒ 3 | det(L) = 1.
Also note that due to (4.5), the values of l1 and l2 (modulo 3) are uniquely
determined once x is determined. Completely analogously one shows that
0��≡ x′ ≡ l′3 ≡ l′4 and equation (4.5) holds for L′ too.
With

L′L−1 =

(
l′1 l′2
l′3 l′4

)(
l4 −l2
−l3 l4

)
=

(
l4l
′
1 − l3l′2 ∗

l4l
′
3 − l3l′4 l1l

′
4 − l2l′3

)
≡
(

x(l′1 − l′2) ∗
xx′ − xx′ ≡ 0 x′(l1 − l2)

)
we see that in all four cases either +L′L−1 ∈ Γ1(3) or −L′L−1 ∈ Γ1(3)
(compare table 4.3), and since ±L′L−1z = z′ we have |E3(Γ1(3))| = 1.

Table 3: Cases for x, x′ and resulting matrix L′L−1 ( mod 3)
x x′ l1 l2 l3 l4 l′1 l′2 l′3 l′4 L′L−1

1 1 -1 1 1 1 -1 1 1 1
(−2 ∗

0 −2

)
≡ ( 1 ∗

0 1 )

1 2 -1 1 1 1 1 2 2 2
(

(1−2) ∗
0 2(−2)

)
≡
(−1 ∗

0 −1

)
2 1 1 2 2 2 -1 1 1 1

(
2(−2) ∗

0 (1−2)

)
≡
(−1 ∗

0 −1

)
2 2 1 2 2 2 1 2 2 2

(−2 ∗
0 −2

)
≡ ( 1 ∗

0 1 )

It remains to show that Q really is a �xed point. A direct calculation
shows that

T =

(
−2 1
−3 1

)
=

(
0 −1
1 −1

)
(−P )

(
−1 1
−1 0

)
has Q as a �xed point and lies in Γ1(3).

After verifying that all cusps are regular, using [ŜL2(Z) : Γ̂1(3)] = 4,
cu(Γ1(3)) = {J∞K , J0K} (see thm 4.1.1) and the result above we can simplify
the k/12− Formula for Γ1(3):

ωf (∞) + ωf (0) +
1

3
ωf (Q) +

∑
ζ∈J

ωf (ζ) =
k

3
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Note that although the index [SL2(Z) : Γ1(3)] is 8, for the k/12 − Formula

we need the index [ŜL2(Z) : Γ̂1(3)] which is 4 = 8/2 due to Lemma 2.1.8
because −Id /∈ Γ1(3).

We now proceed completely analogously to the case of Γ0(2). Again, no
modular form with negative weight exists, i.e.

M∗(Γ1(3)) =
⊕
k∈N

Mk(Γ1(3))

.
Substituting the concrete existing modular forms ψ and Θ1 from Theo-

rems 2.5.7, 2.5.9 into the simpli�ed k/12− Formula, we obtain:

ωψ(∞)︸ ︷︷ ︸
≥1

+ωψ(0) +
1

3
ωψ(Q) +

∑
ζ∈J

ωψ(ζ) =
3

3
= 1

Since all terms are nonnegative, we can conclude that

ωψ(∞) = 1, ωψ(Q) = 0,

otherwise the left hand side would be strictly bigger than 1 which is impos-
sible. This directly implies

ψ(∞) = 0, ψ(Q) 6= 0, (4.6)

where ψ(∞) = limz→i∞ ψ(z).
For Θ1 we obtain

ωΘ1(∞) + ωΘ1(0) +
1

3
ωΘ1(Q) +

∑
ζ∈J

ωΘ1(ζ) =
1

3

Since all terms are nonnegative, we can conclude that

ωΘ1(∞) = 0, ωΘ1(Q) = 1,

otherwise the left hand side would be strictly bigger than 1/3 which is im-
possible. Again, the k/12− Formula reveals the zeros of the modular form:

Θ1(∞) 6= 0, Θ1(Q) = 0. (4.7)

Using Theorem 4.0.3 on ψ and Θ1 which behave di�erently at two points
according to (4.6) and (4.7), we now know that ψ,Θ1 are algebraically inde-
pendent. Let k be a given natural weight, then

Θk
1ψ

0,Θk−3
1 ϕ1,Θk−6

1 ψ2, ...,Θk−3r
1 ϕr, ...
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are linearly independent modular forms of weight (k − 3r) · 1 + r · 3 =
k − 3r + 3r = k. We can do this as long as

k − 3r ≥ 0 ⇐⇒ k

3
≥ r ⇐⇒

⌊
k

3

⌋
+ 1 ≥ r (since r ∈ N)

So we �nd bk/3c+1 linearly independent modular forms. The dimension
formula implies that

dim(Mk(Γ1(3))) ≤
⌊
k[ŜL2(Z) : Γ̂1(3)]/12

⌋
+ 1 = bk/3c+ 1

Consequently, we have already found all modular forms of weight k and
therefore have shown

4.3.2 Theorem. Set r = bk/3c+ 1, then

Mk(Γ1(3)) = LinC(Θk
1,Θ

k−3
1 ψ, ...,Θk−3r

1 ψr) := Nk(Γ1(3))

and therefore

M∗(Γ1(3)) =
⊕
k∈N

Mk(Γ1(3)) =
⊕
k∈N

Nk(Γ1(3)) = C[Θ1, ψ]
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